Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large Language Model (LLM) for Telecommunications: A Comprehensive Survey on Principles, Key Techniques, and Opportunities (2405.10825v2)

Published 17 May 2024 in eess.SY, cs.LG, and cs.SY

Abstract: LLMs have received considerable attention recently due to their outstanding comprehension and reasoning capabilities, leading to great progress in many fields. The advancement of LLM techniques also offers promising opportunities to automate many tasks in the telecommunication (telecom) field. After pre-training and fine-tuning, LLMs can perform diverse downstream tasks based on human instructions, paving the way to artificial general intelligence (AGI)-enabled 6G. Given the great potential of LLM technologies, this work aims to provide a comprehensive overview of LLM-enabled telecom networks. In particular, we first present LLM fundamentals, including model architecture, pre-training, fine-tuning, inference and utilization, model evaluation, and telecom deployment. Then, we introduce LLM-enabled key techniques and telecom applications in terms of generation, classification, optimization, and prediction problems. Specifically, the LLM-enabled generation applications include telecom domain knowledge, code, and network configuration generation. After that, the LLM-based classification applications involve network security, text, image, and traffic classification problems. Moreover, multiple LLM-enabled optimization techniques are introduced, such as automated reward function design for reinforcement learning and verbal reinforcement learning. Furthermore, for LLM-aided prediction problems, we discussed time-series prediction models and multi-modality prediction problems for telecom. Finally, we highlight the challenges and identify the future directions of LLM-enabled telecom networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (206)
  1. Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan, “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE vehicular technology magazine, vol. 14, no. 3, pp. 28–41, 2019.
  2. H. Zhou, M. Erol-Kantarci, Y. Liu, and H. V. Poor, “A survey on model-based, heuristic, and machine learning optimization approaches in RIS-aided wireless networks,” IEEE Communications Surveys & Tutorials (Early access), Dec. 2023.
  3. H. Zhou, M. Erol-Kantarci, and V. Poor, “Knowledge transfer and reuse: A case study of AI-enabled resource management in RAN slicing,” IEEE Wireless Communications, vol. 30, no. 5, pp. 160–169, Oct. 2022.
  4. H. Zhou, M. Elsayed, and M. Erol-Kantarci, “RAN resource slicing in 5G using multi-agent correlated Q-learning,” in Proc. of 2021 IEEE PIMRC, Sep. 2021, pp. 1179–1184.
  5. C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li, “Channel state information prediction for 5G wireless communications: A deep learning approach,” IEEE Trans. on Network Science and Engineering, vol. 7, no. 1, pp. 227–236, 2018.
  6. H. Zhang, H. Zhou, and M. Erol-Kantarci, “Federated deep reinforcement learning for resource allocation in O-RAN slicing,” in Proc. of IEEE 2022 GLOBECOM Conf., 2022, pp. 958–963.
  7. K. Singhal, T. Tu, J. Gottweis, R. Sayres, E. Wulczyn, L. Hou, K. Clark, S. Pfohl, H. Cole-Lewis, D. Neal et al., “Towards expert-level medical question answering with large language models,” arXiv preprint arXiv:2305.09617, 2023.
  8. P. Colombo, T. P. Pires, M. Boudiaf, D. Culver, R. Melo, C. Corro, A. F. Martins, F. Esposito, V. L. Raposo, S. Morgado et al., “Saullm-7b: A pioneering large language model for law,” arXiv preprint arXiv:2403.03883, 2024.
  9. S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann, P. Kambadur, D. Rosenberg, and G. Mann, “Bloomberggpt: A large language model for finance,” arXiv preprint arXiv:2303.17564, 2023.
  10. W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, et al., “A survey of large language models,” arXiv:2303.18223, 2023.
  11. J. Wei, L. Hou, A. Lampinen, X. Chen, D. Huang, Y. Tay, X. Chen, Y. Lu, D. Zhou, T. Ma et al., “Symbol tuning improves in-context learning in language models,” arXiv preprint arXiv:2305.08298, 2023.
  12. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901, 2020.
  13. L. Bariah, H. Zou, Q. Zhao, B. Mouhouche, F. Bader, and M. Debbah, “Understanding telecom language through large language models,” arXiv:2306.07933, 2023.
  14. Y. Du, S. C. Liew, K. Chen, and Y. Shao, “The power of large language models for wireless communication system development: A case study on fpga platforms,” arXiv:2307.07319, 2023.
  15. Y. Shen, J. Shao, X. Zhang, Z. Lin, H. Pan, D. Li, J. Zhang, and K. B. Letaief, “Large language models empowered autonomous edge AI for connected intelligence,” IEEE Communications Magazine, 2024.
  16. Z. Lin, G. Qu, Q. Chen, X. Chen, Z. Chen, and K. Huang, “Pushing large language models to the 6G edge: Vision, challenges, and opportunities,” arXiv:2309.16739, 2023.
  17. M. Xu, N. Dusit, J. Kang, Z. Xiong, S. Mao, Z. Han, D. I. Kim, and K. B. Letaief, “When large language model agents meet 6G networks: Perception, grounding, and alignment,” arXiv:2401.07764, 2024.
  18. Q. Xiang, Y. Lin, M. Fang, B. Huang, S. Huang, R. Wen, F. Le, L. Kong, and J. Shu, “Toward reproducing network research results using large language models,” in Proc. of the 22nd ACM Workshop on Hot Topics in Networks, 2023, pp. 56–62.
  19. L. Li, Y. Zhang, and L. Chen, “Prompt distillation for efficient llm-based recommendation,” in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 1348–1357.
  20. Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang, S. Jin, E. Zhou et al., “The rise and potential of large language model based agents: A survey,” arXiv preprint arXiv:2309.07864, 2023.
  21. C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen, “Large language models as optimizers,” arXiv:2309.03409, 2023.
  22. D. Wu, X. Wang, Y. Qiao, Z. Wang, J. Jiang, S. Cui, and F. Wang, “Large language model adaptation for networking,” arXiv:2402.02338, 2024.
  23. N. Bosch, “Integrating telecommunications-specific language models into a trouble report retrieval approach,” Master’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS), 2022.
  24. Y. Xu, Y. Chen, X. Zhang, X. Lin, P. Hu, Y. Ma, S. Lu, W. Du, Z. Mao, E. Zhai et al., “Cloudeval-yaml: A practical benchmark for cloud configuration generation,” arXiv preprint arXiv:2401.06786, 2023.
  25. G. Charan, M. Alrabeiah, and A. Alkhateeb, “Vision-aided 6G wireless communications: Blockage prediction and proactive handoff,” IEEE Trans. on Vehicular Technology, vol. 70, no. 10, pp. 10 193–10 208, 2021.
  26. M. Matsuura, Y. K. Jung, and S. N. Lim, “Visual-LLM zero-shot classification,” 2023. [Online]. Available: https://www.crcv.ucf.edu/wp-content/uploads/2018/11/Misaki-Final-report.pdf
  27. S. Booth, W. B. Knox, J. Shah, S. Niekum, P. Stone, and A. Allievi, “The perils of trial-and-error reward design: misdesign through overfitting and invalid task specifications,” in Proc. of the AAAI Conf. on Artificial Intelligence, vol. 37, no. 5, 2023, pp. 5920–5929.
  28. S. Tarkoma, R. Morabito, and J. Sauvola, “AI-native interconnect framework for integration of large language model technologies in 6G systems,” arXiv:2311.05842, 2023.
  29. Z. Chen, Z. Zhang, and Z. Yang, “Big AI models for 6G wireless networks: Opportunities, challenges, and research directions,” arXiv:2308.06250, 2023.
  30. L. Bariah, Q. Zhao, H. Zou, Y. Tian, F. Bader, and M. Debbah, “Large language models for telecom: The next big thing?” arXiv:2306.10249, 2023.
  31. S. Xu, C. K. Thomas, O. Hashash, N. Muralidhar, W. Saad, and N. Ramakrishnan, “Large multi-modal models (LMMs) as universal foundation models for AI-native wireless systems,” arXiv:2402.01748, 2024.
  32. W. Wang, C. Zhou, H. He, W. Wu, W. Zhuang, and X. Shen, “Cellular traffic load prediction with LSTM and gaussian process regression,” in Proc. of 2020 IEEE Intl. Conf. on communications (ICC), 2020, pp. 1–6.
  33. J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large language models,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 824–24 837, 2022.
  34. J. Song, Z. Zhou, J. Liu, C. Fang, Z. Shu, and L. Ma, “Self-refined large language model as automated reward function designer for deep reinforcement learning in robotics,” arXiv:2309.06687, 2023.
  35. M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh, “Reward design with language models,” arXiv:2303.00001, 2023.
  36. Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and A. Anandkumar, “Eureka: Human-level reward design via coding large language models,” arXiv:2310.12931, 2023.
  37. N. Gruver, M. Finzi, S. Qiu, and A. G. Wilson, “Large language models are zero-shot time series forecasters,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  38. Y. Li, Z. Li, K. Zhang, R. Dan, S. Jiang, and Y. Zhang, “Chatdoctor: A medical chat model fine-tuned on a large language model meta-ai (llama) using medical domain knowledge,” Cureus, vol. 15, no. 6, 2023.
  39. Z. Xu, Y. Zhang, E. Xie, Z. Zhao, Y. Guo, K. K. Wong, Z. Li, and H. Zhao, “Drivegpt4: Interpretable end-to-end autonomous driving via large language model,” arXiv preprint arXiv:2310.01412, 2023.
  40. J. Zhang, Y. Hou, R. Xie, W. Sun, J. McAuley, W. X. Zhao, L. Lin, and J.-R. Wen, “Agentcf: Collaborative learning with autonomous language agents for recommender systems,” arXiv preprint arXiv:2310.09233, 2023.
  41. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  42. N. Shazeer, “Fast transformer decoding: One write-head is all you need,” arXiv:1911.02150, 2019.
  43. J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and S. Sanghai, “Gqa: Training generalized multi-query transformer models from multi-head checkpoints,” 2023.
  44. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv:1810.04805, 2018.
  45. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv:1907.11692, 2019.
  46. Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A lite bert for self-supervised learning of language representations,” arXiv:1909.11942, 2019.
  47. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” Journal of machine learning research, vol. 21, no. 140, pp. 1–67, 2020.
  48. M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” arXiv:1910.13461, 2019.
  49. A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling language modeling with pathways,” Journal of Machine Learning Research, vol. 24, no. 240, pp. 1–113, 2023.
  50. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv:2302.13971, 2023.
  51. A. Zeng, X. Liu, Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu, W. Zheng, X. Xia et al., “Glm-130b: An open bilingual pre-trained model,” arXiv:2210.02414, 2022.
  52. M. Guo, Z. Dai, D. Vrandečić, and R. Al-Rfou, “Wiki-40b: Multilingual language model dataset,” in Proceedings of the 12th Language Resources and Evaluation Conference, 2020, pp. 2440–2452.
  53. I. Beltagy, K. Lo, and A. Cohan, “SciBERT: A pretrained language model for scientific text,” arXiv:1903.10676, 2019.
  54. F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic evaluation of large language models of code,” in Proc. of the 6th ACM SIGPLAN Intl. Symposium on Machine Programming, 2022.
  55. H. Laurençon, L. Saulnier, T. Wang, C. Akiki et al., “The bigscience roots corpus: A 1.6 TB composite multilingual dataset,” Advances in Neural Information Processing Systems, vol. 35, pp. 31 809–31 826, 2022.
  56. T. Kudo, “Subword regularization: Improving neural network translation models with multiple subword candidates,” arXiv:1804.10959, 2018.
  57. Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song, and I. Stoica, “Terapipe: Token-level pipeline parallelism for training large-scale language models,” in Proc. of 38th Intl. Conf. on Machine Learning (ICML), 2021, pp. 6543–6552.
  58. Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neural networks using pipeline parallelism,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  59. M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro, “Megatron-lm: Training multi-billion parameter language models using model parallelism,” arXiv:1909.08053, 2019.
  60. S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory optimizations toward training trillion parameter models,” in Proc. of SC20: Intl. Conf. for High Performance Computing, Networking, Storage and Analysis, 2020, pp. 1–16.
  61. J. Wei, M. Bosma, V. Y. Zhao et al., “Finetuned language models are zero-shot learners,” arXiv preprint arXiv:2109.01652, 2021.
  62. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.
  63. OpenAI, “Gpt-4v(ision) system card,” OpenAI, 2023.
  64. H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma et al., “Scaling instruction-finetuned language models,” arXiv:2210.11416, 2022.
  65. D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving, “Fine-tuning language models from human preferences,” arXiv preprint arXiv:1909.08593, 2019.
  66. P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei, “Deep reinforcement learning from human preferences,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  67. C. Zhou, P. Liu, P. Xu, S. Iyer, J. Sun, Y. Mao, X. Ma, A. Efrat, P. Yu, L. Yu et al., “Lima: Less is more for alignment,” arXiv:2305.11206, 2023.
  68. J. Wei, X. Wang, D. Schuurmans, M. Bosma et al., “Chain-of-thought prompting elicits reasoning in large language models,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 824–24 837, 2022.
  69. J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What makes good in-context examples for gpt-3333?” arXiv preprint arXiv:2101.06804, 2021.
  70. Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp, “Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity,” arXiv preprint arXiv:2104.08786, 2021.
  71. N. Wies, Y. Levine, and A. Shashua, “The learnability of in-context learning,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  72. J. Von Oswald, E. Niklasson, E. Randazzo, J. Sacramento, A. Mordvintsev, A. Zhmoginov, and M. Vladymyrov, “Transformers learn in-context by gradient descent,” in Proc. of the 40th ICML, 2023, pp. 35 151–35 174.
  73. J. Wei, J. Wei, Y. Tay, D. Tran, A. Webson, Y. Lu, X. Chen, H. Liu, D. Huang, D. Zhou et al., “Larger language models do in-context learning differently,” arXiv:2303.03846, 2023.
  74. S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large language models,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  75. J. Qian, H. Wang, Z. Li, S. Li, and X. Yan, “Limitations of language models in arithmetic and symbolic induction,” arXiv preprint arXiv:2208.05051, 2022.
  76. D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet, Q. Le et al., “Least-to-most prompting enables complex reasoning in large language models,” arXiv preprint arXiv:2205.10625, 2022.
  77. L. Wang, W. Xu, Y. Lan, Z. Hu, Y. Lan, R. K.-W. Lee, and E.-P. Lim, “Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language models,” arXiv preprint arXiv:2305.04091, 2023.
  78. C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Text summarization branches out, 2004, pp. 74–81.
  79. T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating text generation with bert,” arXiv preprint arXiv:1904.09675, 2019.
  80. M. Gao and X. Wan, “Dialsummeval: Revisiting summarization evaluation for dialogues,” in Proc. of the 2022 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2022, pp. 5693–5709.
  81. Y. Zha, Y. Yang, R. Li, and Z. Hu, “Alignscore: Evaluating factual consistency with a unified alignment function,” arXiv preprint arXiv:2305.16739, 2023.
  82. S. Samsi, D. Zhao, J. McDonald, B. Li, A. Michaleas, M. Jones, W. Bergeron, J. Kepner, D. Tiwari, and V. Gadepally, “From words to watts: Benchmarking the energy costs of large language model inference,” in 2023 IEEE High Performance Extreme Computing Conference (HPEC).   IEEE, 2023, pp. 1–9.
  83. A. Faiz, S. Kaneda, R. Wang, R. Osi, P. Sharma, F. Chen, and L. Jiang, “Llmcarbon: Modeling the end-to-end carbon footprint of large language models,” arXiv preprint arXiv:2309.14393, 2023.
  84. J. McDonald, B. Li, N. Frey, D. Tiwari, V. Gadepally, and S. Samsi, “Great power, great responsibility: Recommendations for reducing energy for training language models,” arXiv preprint arXiv:2205.09646, 2022.
  85. Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C. Wang, Y. Wang et al., “A survey on evaluation of large language models,” ACM Transactions on Intelligent Systems and Technology, 2023.
  86. C. Ziems, W. Held, O. Shaikh, J. Chen, Z. Zhang, and D. Yang, “Can large language models transform computational social science?” Computational Linguistics, pp. 1–55, 2024.
  87. P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang, D. Narayanan, Y. Wu, A. Kumar et al., “Holistic evaluation of language models,” arXiv preprint arXiv:2211.09110, 2022.
  88. N. Ding, Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, S. Hu, Y. Chen, C.-M. Chan, W. Chen et al., “Parameter-efficient fine-tuning of large-scale pre-trained language models,” Nature Machine Intelligence, vol. 5, no. 3, pp. 220–235, 2023.
  89. Z. Lin, G. Zhu, Y. Deng, X. Chen, Y. Gao, K. Huang, and Y. Fang, “Efficient parallel split learning over resource-constrained wireless edge networks,” IEEE Trans. on Mobile Computing, 2024.
  90. T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora: Efficient finetuning of quantized LLMs,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  91. K. Alizadeh, I. Mirzadeh, D. Belenko, K. Khatamifard, M. Cho, C. C. Del Mundo, M. Rastegari, and M. Farajtabar, “Llm in a flash: Efficient large language model inference with limited memory,” arXiv preprint arXiv:2312.11514, 2023.
  92. Qualcomm, “Qualcomm brings the best of on-device ai to more smartphones with snapdragon 8s gen 3,” 2024. [Online]. Available: https://www.qualcomm.com/news/releases/2024/03/qualcomm-brings-the-best-of-on-device-ai-to-more-smartphones-wit
  93. B. Yang, L. He, N. Ling, Z. Yan, G. Xing, X. Shuai, X. Ren, and X. Jiang, “Edgefm: Leveraging foundation model for open-set learning on the edge,” arXiv preprint arXiv:2311.10986, 2023.
  94. B. Peng, C. Li, P. He, M. Galley, and J. Gao, “Instruction tuning with gpt-4,” arXiv:2304.03277, 2023.
  95. S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu, T. Zhang, F. Wu et al., “Instruction tuning for large language models: A survey,” arXiv:2308.10792, 2023.
  96. Y. Wang, K. Chen, H. Tan, and K. Guo, “Tabi: An efficient multi-level inference system for large language models,” in Proc. 18th European Conf. on Computer Systems, 2023, pp. 233–248.
  97. D. Xu, W. Yin, X. Jin, Y. Zhang, S. Wei, M. Xu, and X. Liu, “LLMCad: Fast and scalable on-device large language model inference,” arXiv:2309.04255, 2023.
  98. Y. Chen, R. Li, Z. Zhao, C. Peng, J. Wu, E. Hossain, and H. Zhang, “Netgpt: An ai-native network architecture for provisioning beyond personalized generative services,” IEEE Network, 2024.
  99. H. Zhou, M. Elsayed, M. Bavand, R. Gaigalas, S. Furr, and M. Erol-Kantarci, “Cooperative hierarchical deep reinforcement learning based joint sleep, power, and ris control for energy-efficient hetnet,” arXiv:2304.13226, 2023.
  100. H. Holm, “Bidirectional encoder representations from transformers (bert) for question answering in the telecom domain,” Master’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS), 2021.
  101. N. Marzo i Grimalt, “Natural language processing model for log analysis to retrieve solutions for troubleshooting processes,” Master’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS), 2021.
  102. S. Soman and R. HG, “Observations on LLMs for telecom domain: Capabilities and limitations,” arXiv:2305.13102, 2023.
  103. B. Wang, Z. Wang, X. Wang, Y. Cao, R. A Saurous, and Y. Kim, “Grammar prompting for domain-specific language generation with large language models,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  104. S. K. Mani, Y. Zhou, K. Hsieh, S. Segarra, T. Eberl, E. Azulai, I. Frizler, R. Chandra, and S. Kandula, “Enhancing network management using code generated by large language models,” in Proc. of the 22nd ACM Workshop on Hot Topics in Networks, 2023, pp. 196–204.
  105. J. Zhang, J. Cambronero, S. Gulwani, V. Le, R. Piskac, G. Soares, and G. Verbruggen, “Repairing bugs in Python assignments using large language models,” arXiv:2209.14876, 2022.
  106. S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-Gavitt, and S. Garg, “Benchmarking large language models for automated verilog RTL code generation,” in Proc. of 2023 Design, Automation & Test in Europe Conf. & Exhibition (DATE), 2023, pp. 1–6.
  107. K. Dzeparoska, J. Lin, A. Tizghadam, and A. Leon-Garcia, “LLM-based policy generation for intent-based management of applications,” in Proc. of 2023 19th Intl. Conf. on Network and Service Management (CNSM), 2023, pp. 1–7.
  108. C. Wang, M. Scazzariello, A. Farshin, D. Kostic, and M. Chiesa, “Making network configuration human friendly,” arXiv preprint arXiv:2309.06342, 2023.
  109. R. Mondal, A. Tang, R. Beckett, T. Millstein, and G. Varghese, “What do LLMs need to synthesize correct router configurations?” in Proc. of the 22nd ACM Workshop on Hot Topics in Networks, 2023, pp. 189–195.
  110. A. Maatouk, F. Ayed, N. Piovesan, A. De Domenico, M. Debbah, and Z.-Q. Luo, “Teleqna: A benchmark dataset to assess large language models telecommunications knowledge,” arXiv:2310.15051, 2023.
  111. E. Ibarrola, K. Jakobs, M. H. Sherif, and D. Sparrell, “The evolution of telecom business, economy, policies and regulations,” IEEE Communications Magazine, vol. 61, no. 7, pp. 16–17, 2023.
  112. Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, and H. Poon, “Domain-specific language model pretraining for biomedical natural language processing,” ACM Trans. on Computing for Healthcare (HEALTH), vol. 3, no. 1, pp. 1–23, 2021.
  113. P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Majumder, A. McNamara, B. Mitra, T. Nguyen et al., “MS MARCO: A human generated machine reading comprehension dataset,” arXiv:1611.09268, 2016.
  114. E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong, “Codegen: An open large language model for code with multi-turn program synthesis,” arXiv:2203.13474, 2022.
  115. G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, “Code smells and refactoring: A tertiary systematic review of challenges and observations,” Journal of Systems and Software, vol. 167, p. 110610, 2020.
  116. X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman, “openwifi: a free and open-source IEEE802.11 SDR implementation on SoC,” in Proc. 2020 IEEE 91st Vehicular Technology Conf. (VTC2020-Spring), 2020, pp. 1–2.
  117. B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti, “A survey of software-defined networking: Past, present, and future of programmable networks,” IEEE Commun. Surv. Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.
  118. A. El-Hassany, P. Tsankov, L. Vanbever, and M. T. Vechev, “Netcomplete: Practical network-wide configuration synthesis with autocompletion,” in Proc. of 15th USENIX Symposium on Networked Systems Design and Implementation, 2018, pp. 579–594.
  119. H. Chen, Y. Jin, W. Wang, W. Liu, L. You, L. Fu, and Q. Xiang, “When configuration verification meets machine learning: A DRL approach for finding minimum k-link failures,” in Proc. of 24st Asia-Pacific Network Operations and Management Symposium, 2023, pp. 83–88.
  120. A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and T. D. Millstein, “A general approach to network configuration analysis,” in Proc. 12th USENIX Symposium on Networked Systems Design and Implementation, 2015, pp. 469–483.
  121. E. Aghaei, X. Niu, W. Shadid, and E. Al-Shaer, “Securebert: A domain-specific language model for cybersecurity,” in Proc. of Intl. Conf. on Security and Privacy in Communication Systems, 2022, pp. 39–56.
  122. K. Ameri, M. Hempel, H. Sharif, J. Lopez Jr, and K. Perumalla, “Cybert: Cybersecurity claim classification by fine-tuning the bert language model,” Journal of Cybersecurity and Privacy, vol. 1, no. 4, pp. 615–637, 2021.
  123. J. Yin, M. Tang, J. Cao, and H. Wang, “Apply transfer learning to cybersecurity: Predicting exploitability of vulnerabilities by description,” Knowledge-Based Systems, vol. 210, p. 106529, 2020.
  124. M. A. Ferrag, M. Ndhlovu, N. Tihanyi, L. C. Cordeiro, M. Debbah, T. Lestable, and N. S. Thandi, “Revolutionizing cyber threat detection with large language models: A privacy-preserving bert-based lightweight model for iot/iiot devices,” IEEE Access, 2024.
  125. Y. E. Seyyar, A. G. Yavuz, and H. M. Ünver, “An attack detection framework based on bert and deep learning,” IEEE Access, vol. 10, pp. 68 633–68 644, 2022.
  126. S. Aftan and H. Shah, “Using the AraBERT model for customer satisfaction classification of telecom sectors in saudi arabia,” Brain Sciences, vol. 13, no. 1, p. 147, 2023.
  127. S. Terra Vieira, R. Lopes Rosa, D. Zegarra Rodríguez, M. Arjona Ramírez, M. Saadi, and L. Wuttisittikulkij, “Q-meter: Quality monitoring system for telecommunication services based on sentiment analysis using deep learning,” Sensors, vol. 21, no. 5, p. 1880, 2021.
  128. Y. Yao, H. Zhou, and M. Erol-Kantarci, “Joint sensing and communications for deep reinforcement learning-based beam management in 6G,” in Proc. IEEE 2022 GLOBECOM Conf., Dec 2022, pp. 5019–5024.
  129. S. Pratt, I. Covert, R. Liu, and A. Farhadi, “What does a platypus look like? generating customized prompts for zero-shot image classification,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision, 2023, pp. 15 691–15 701.
  130. Z. Shi, N. Luktarhan, Y. Song, and G. Tian, “BFCN: a novel classification method of encrypted traffic based on BERT and CNN,” Electronics, vol. 12, no. 3, p. 516, 2023.
  131. X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, “Et-bert: A contextualized datagram representation with pre-training transformers for encrypted traffic classification,” in Proc. of 2022 ACM Web Conf., 2022, pp. 633–642.
  132. T. Van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois, M. Lindorfer, D. Choffnes, M. Van Steen, and A. Peter, “Flowprint: Semi-supervised mobile-app fingerprinting on encrypted network traffic,” in Proc. of Network and distributed system security symposium (NDSS), vol. 27, 2020.
  133. G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani, “Characterization of encrypted and vpn traffic using time-related,” in Proc. of the 2nd Intl. Conf. on information systems security and privacy (ICISSP), 2016, pp. 407–414.
  134. A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” OpenAI, Tech. Rep., 2018. [Online]. Available: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
  135. K. Mitra, A. Zaslavsky, and C. Åhlund, “Context-aware QoE modelling, measurement, and prediction in mobile computing systems,” IEEE Trans. on Mobile Computing, vol. 14, no. 5, pp. 920–936, 2013.
  136. J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican, M. Reynolds et al., “Flamingo: a visual language model for few-shot learning,” Advances in Neural Information Processing Systems, vol. 35, pp. 23 716–23 736, 2022.
  137. Y. Tewel, Y. Shalev, I. Schwartz, and L. Wolf, “Zerocap: Zero-shot image-to-text generation for visual-semantic arithmetic,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2022, pp. 17 918–17 928.
  138. Y. Du, F. Wei, Z. Zhang, M. Shi, Y. Gao, and G. Li, “Learning to prompt for open-vocabulary object detection with vision-language model,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2022, pp. 14 084–14 093.
  139. “Spacy text analytic tool,” https://spacy.io/usage, accessed: 2010-09-30.
  140. M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning,” 2022. [Online]. Available: https://dx.doi.org/10.21227/mbc1-1h68
  141. T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s transformers: State-of-the-art natural language processing,” arXiv:1910.03771, 2019.
  142. E. Aghaei and E. Al-Shaer, “Threatzoom: neural network for automated vulnerability mitigation,” in Proc. of the 6th Annual Symposium on Hot Topics in the Science of Security, 2019, pp. 1–3.
  143. E. Aghaei, W. Shadid, and E. Al-Shaer, “Threatzoom: Hierarchical neural network for cves to cwes classification,” in Proc. of Intl. Conf. on Security and Privacy in Communication Systems, 2020, pp. 23–41.
  144. F. Yayah, K. I. Ghauth, and C. TING, “The automated machine learning classification approach on telco trouble ticket dataset,” Journal of Engineering Science and Technology, vol. 16, pp. 4263–4282, 2021.
  145. C. Shah, R. W. White, R. Andersen, G. Buscher, S. Counts, S. S. S. Das, A. Montazer, S. Manivannan, J. Neville, X. Ni et al., “Using large language models to generate, validate, and apply user intent taxonomies,” arXiv:2309.13063, 2023.
  146. Y. Ahn, J. Kim, S. Kim, K. Shim, J. Kim, S. Kim, and B. Shim, “Towards intelligent millimeter and terahertz communication for 6G: Computer vision-aided beamforming,” IEEE Wireless Communications, 2022.
  147. M. Civelek and A. Yazici, “Automated moving object classification in wireless multimedia sensor networks,” IEEE Sensors Journal, vol. 17, no. 4, pp. 1116–1131, 2016.
  148. S.-W. Kim, K. Ko, H. Ko, and V. C. Leung, “Edge-network-assisted real-time object detection framework for autonomous driving,” IEEE Network, vol. 35, no. 1, pp. 177–183, 2021.
  149. Z. Yang, L. Li, K. Lin, J. Wang, C.-C. Lin, Z. Liu, and L. Wang, “The dawn of LLM: Preliminary explorations with GPT-4v (ision),” arXiv preprint arXiv:2309.17421, vol. 9, no. 1, p. 1, 2023.
  150. T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent comparison of popular dpi tools for traffic classification,” Computer Networks, vol. 76, pp. 75–89, 2015.
  151. K. Lin, X. Xu, and H. Gao, “Tscrnn: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of iiot,” Computer Networks, vol. 190, p. 107974, 2021.
  152. P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting: Undermining website fingerprinting defenses with deep learning,” in Proc. of the 2018 ACM SIGSAC Conf. on Computer and Communications Security, 2018, pp. 1928–1943.
  153. K. Shen and W. Yu, “Fractional programming for communication systems—Part I: Power control and beamforming,” IEEE Trans. on Signal Processing, vol. 66, no. 10, pp. 2616–2630, 2018.
  154. S. L. Martins and C. C. Ribeiro, “Metaheuristics and applications to optimization problems in telecommunications,” Handbook of optimization in telecommunications, pp. 103–128, 2006.
  155. S. Alarie, C. Audet, A. E. Gheribi, M. Kokkolaras, and S. Le Digabel, “Two decades of blackbox optimization applications,” EURO Journal on Computational Optimization, vol. 9, p. 100011, 2021.
  156. R. Devidze, G. Radanovic, P. Kamalaruban, and A. Singla, “Explicable reward design for reinforcement learning agents,” Advances in Neural Information Processing Systems, vol. 34, pp. 20 118–20 131, 2021.
  157. R. Anand, D. Aggarwal, and V. Kumar, “A comparative analysis of optimization solvers,” Journal of Statistics and Management Systems, vol. 20, no. 4, pp. 623–635, 2017.
  158. S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of artificial general intelligence: Early experiments with gpt-4,” arXiv:2303.12712, 2023.
  159. N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao, “Reflexion: Language agents with verbal reinforcement learning,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  160. K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano et al., “Training verifiers to solve math word problems,” arXiv:2110.14168, 2021.
  161. M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le, E. H. Chi, D. Zhou et al., “Challenging big-bench tasks and whether chain-of-thought can solve them,” arXiv:2210.09261, 2022.
  162. P.-F. Guo, Y.-H. Chen, Y.-D. Tsai, and S.-D. Lin, “Towards optimizing with large language models,” arXiv:2310.05204, 2023.
  163. H. Chen, G. E. Constante-Flores, and C. Li, “Diagnosing infeasible optimization problems using large language models,” arXiv:2308.12923, 2023.
  164. A. AhmadiTeshnizi, W. Gao, and M. Udell, “OptiMUS: Optimization modeling using MIP solvers and large language models,” arXiv:2310.06116, 2023.
  165. M. Pluhacek, A. Kazikova, T. Kadavy, A. Viktorin, and R. Senkerik, “Leveraging large language models for the generation of novel metaheuristic optimization algorithms,” in Proc. of the Companion Conf. on Genetic and Evolutionary Computation, 2023, pp. 1812–1820.
  166. F. Liu, X. Lin, Z. Wang, S. Yao, X. Tong, M. Yuan, and Q. Zhang, “Large language model for multi-objective evolutionary optimization,” arXiv:2310.12541, 2023.
  167. Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly,” IEEE Trans. on pattern analysis and machine intelligence, vol. 41, no. 9, pp. 2251–2265, 2018.
  168. H. Zhou, M. Erol-Kantarci, and H. V. Poor, “Learning from peers: Deep transfer reinforcement learning for joint radio and cache resource allocation in 5G RAN slicing,” IEEE Trans. on Cognitive Communications and Networking, vol. 8, no. 4, pp. 1925–1941, 2022.
  169. D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan, “Inverse reward design,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  170. S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao, “React: Synergizing reasoning and acting in language models,” arXiv:2210.03629, 2022.
  171. D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley, “Google vizier: A service for black-box optimization,” in Proc. of the 23rd ACM SIGKDD Intl. Conf. on knowledge discovery and data mining, 2017, pp. 1487–1495.
  172. V. N. Ha and L. B. Le, “Distributed base station association and power control for heterogeneous cellular networks,” IEEE Trans. on Vehicular Technology, vol. 63, no. 1, pp. 282–296, 2013.
  173. W. Zhang, Z. Zhang, H.-C. Chao, and M. Guizani, “Toward intelligent network optimization in wireless networking: An auto-learning framework,” IEEE Wireless Communications, vol. 26, no. 3, pp. 76–82, 2019.
  174. R. M. Dreifuerst, S. Daulton, Y. Qian, P. Varkey, M. Balandat, S. Kasturia, A. Tomar, A. Yazdan, V. Ponnampalam, and R. W. Heath, “Optimizing coverage and capacity in cellular networks using machine learning,” in Proc. of 2021 IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 8138–8142.
  175. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2909–2913, 2016.
  176. H. Zhou, M. Erol-Kantarci, Y. Liu, and H. V. Poor, “Heuristic algorithms for RIS-assisted wireless networks: Exploring heuristic-aided machine learning,” arXiv:2307.01205, 2023.
  177. J. Dai, Y. Wang, C. Pan, K. Zhi, H. Ren, and K. Wang, “Reconfigurable intelligent surface aided massive MIMO systems with low-resolution DACs,” IEEE Communications Letters, vol. 25, no. 9, pp. 3124–3128, 2021.
  178. K. Zhi, C. Pan, H. Ren, and K. Wang, “Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI,” IEEE Trans. on Communications, vol. 70, no. 5, pp. 3558–3574, 2022.
  179. T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models are zero-shot reasoners,” Advances in Neural Information Processing Systems, vol. 35, pp. 22 199–22 213, 2022.
  180. A. Garza and M. Mergenthaler-Canseco, “Timegpt-1,” arXiv:2310.03589, 2023.
  181. M. Razghandi, H. Zhou, M. Erol-Kantarci, and D. Turgut, “Smart home energy management: Vae-gan synthetic dataset generator and q-learning,” IEEE Trans. on Smart Grid, vol. 15, no. 2, pp. 1562–1573, Mar 2024.
  182. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv:2010.11929, 2020.
  183. A. Das, W. Kong, R. Sen, and Y. Zhou, “A decoder-only foundation model for time-series forecasting,” arXiv preprint arXiv:2310.10688, 2023.
  184. K. Kousias, M. Rajiullah, G. Caso, U. Ali, O. Alay, A. Brunstrom, L. De Nardis, M. Neri, and M.-G. Di Benedetto, “A large-scale dataset of 4G, NB-IoT, and 5G non-standalone network measurements,” IEEE Communications Magazine, 2023.
  185. D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan, “Beyond throughput, the next generation: A 5g dataset with channel and context metrics,” in Proc. of the 11th ACM multimedia systems Conf., 2020, pp. 303–308.
  186. H. Xue and F. D. Salim, “Promptcast: A new prompt-based learning paradigm for time series forecasting,” IEEE Trans. on Knowledge and Data Engineering, 2023.
  187. B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-efficient prompt tuning,” arXiv:2104.08691, 2021.
  188. M. Jin, S. Wang, L. Ma, Z. Chu, J. Y. Zhang, X. Shi, P.-Y. Chen, Y. Liang, Y.-F. Li, S. Pan et al., “Time-llm: Time series forecasting by reprogramming large language models,” arXiv:2310.01728, 2023.
  189. C. Chang, W.-Y. Wang, W.-C. Peng, and T.-F. Chen, “LLM4TS: Aligning pre-trained LLMs as data-efficient time-series forecasters,” arXiv:2308.08469, 2024.
  190. T. Zhou, P. Niu, X. Wang, L. Sun, and R. Jin, “One fits all: Power general time series analysis by pretrained lm,” arXiv: 2302.11939, 2023.
  191. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” arXiv: 2106.09685, 2021.
  192. K. Lu, A. Grover, P. Abbeel, and I. Mordatch, “Pretrained transformers as universal computation engines,” arXiv: 2103.05247, 2021.
  193. Y. Zhang, K. Gong, K. Zhang, H. Li, Y. Qiao, W. Ouyang, and X. Yue, “Meta-transformer: A unified framework for multimodal learning,” arXiv:2307.10802, 2023.
  194. W. Jiang and H. D. Schotten, “Deep learning for fading channel prediction,” IEEE Open Journal of the Communications Society, vol. 1, pp. 320–332, 2020.
  195. P. Sen, J. Hall, M. Polese, V. Petrov, D. Bodet, F. Restuccia, T. Melodia, and J. M. Jornet, “Terahertz communications can work in rain and snow: Impact of adverse weather conditions on channels at 140 GHz,” in Proc. of the 6th ACM Workshop on Millimeter-Wave and Terahertz Networks and Sensing Systems, 2022, pp. 13–18.
  196. Y. Ke, H. Gao, W. Xu, L. Li, L. Guo, and Z. Feng, “Position prediction based fast beam tracking scheme for multi-user UAV-mmWave communications,” in Proc. of 2019 IEEE Intl. Conf. on Communications (ICC), 2019, pp. 1–7.
  197. S. H. A. Shah and S. Rangan, “Multi-cell multi-beam prediction using auto-encoder LSTM for mmwave systems,” IEEE Trans. on Wireless Communications, vol. 21, no. 12, pp. 10 366–10 380, 2022.
  198. D. Alekseeva, N. Stepanov, A. Veprev, A. Sharapova, E. S. Lohan, and A. Ometov, “Comparison of machine learning techniques applied to traffic prediction of real wireless network,” IEEE Access, vol. 9, pp. 159 495–159 514, 2021.
  199. C. Hu, X. Chen, J. Wang, H. Li, J. Kang, Y. T. Xu, X. Liu, D. Wu, S. Jang, I. Park, and G. Dudek, “AFB: Improving communication load forecasting accuracy with adaptive feature boosting,” in GLOBECOM 2021 - IEEE Global Communications Conference, 2021, pp. 01–06.
  200. M. Abdullah, J. He, and K. Wang, “Weather-aware fiber-wireless traffic prediction using graph convolutional networks,” IEEE Access, vol. 10, pp. 95 908–95 918, 2022.
  201. C. Liang, Y. He, F. R. Yu, and N. Zhao, “Enhancing QoE-aware wireless edge caching with software-defined wireless networks,” IEEE Trans. on Wireless Communications, vol. 16, no. 10, pp. 6912–6925, 2017.
  202. I. Sousa, M. P. Queluz, and A. Rodrigues, “A survey on QoE-oriented wireless resources scheduling,” Journal of Network and Computer Applications, vol. 158, p. 102594, 2020.
  203. Z. Luo, Q. Xie, and S. Ananiadou, “Chatgpt as a factual inconsistency evaluator for abstractive text summarization,” arXiv preprint arXiv:2303.15621, 2023.
  204. Wikipedia, “Gpt-4,” 2024. [Online]. Available: https://en.wikipedia.org/wiki/GPT-4
  205. Neoteric, “Cost estimation of using gpt-3 for real applications,” 2024. [Online]. Available: https://neoteric.eu/blog/how-much-does-it-cost-to-use-gpt-models-gpt-3-pricing-explained/
  206. L. Chen, M. Zaharia, and J. Zou, “Frugalgpt: How to use large language models while reducing cost and improving performance,” arXiv preprint arXiv:2305.05176, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (14)
  1. Hao Zhou (351 papers)
  2. Chengming Hu (13 papers)
  3. Ye Yuan (274 papers)
  4. Yufei Cui (23 papers)
  5. Yili Jin (9 papers)
  6. Can Chen (64 papers)
  7. Haolun Wu (27 papers)
  8. Dun Yuan (8 papers)
  9. Li Jiang (88 papers)
  10. Di Wu (477 papers)
  11. Xue Liu (156 papers)
  12. Charlie Zhang (17 papers)
  13. Xianbin Wang (124 papers)
  14. Jiangchuan Liu (29 papers)
Citations (25)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets