Tidal Love Numbers from EFT of Black Hole Perturbations with Timelike Scalar Profile (2405.10813v2)
Abstract: We study static tidal Love numbers (TLNs) of a static and spherically symmetric black hole for odd-parity metric perturbations. We describe black hole perturbations using the effective field theory (EFT), formulated on an arbitrary background with a timelike scalar profile in the context of scalar-tensor theories. In particular, we obtain a static solution for the generalized Regge-Wheeler equation order by order in a modified-gravity parameter and extract the TLNs uniquely by analytic continuation of the multipole index $\ell$ to non-integer values. For a stealth Schwarzschild black hole, the TLNs are vanishing as in the case of Schwarzschild solution in general relativity. We also study the case of Hayward black hole as an example of non-stealth background, where we find that the TLNs are non-zero (or there is a logarithmic running). This result suggests that our EFT allows for non-vanishing TLNs and can in principle leave a detectable imprint on gravitational waves from inspiralling binary systems, which opens a new window for testing gravity in the strong-field regime.
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116 no. 6, (2016) 061102, arXiv:1602.03837 [gr-qc].
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs,” Phys. Rev. X 9 no. 3, (2019) 031040, arXiv:1811.12907 [astro-ph.HE].
- LIGO Scientific, Virgo Collaboration, R. Abbott et al., “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run,” Phys. Rev. X 11 (2021) 021053, arXiv:2010.14527 [gr-qc].
- LIGO Scientific, VIRGO Collaboration, R. Abbott et al., “GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run,” Phys. Rev. D 109 no. 2, (2024) 022001, arXiv:2108.01045 [gr-qc].
- KAGRA, VIRGO, LIGO Scientific Collaboration, R. Abbott et al., “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run,” Phys. Rev. X 13 no. 4, (2023) 041039, arXiv:2111.03606 [gr-qc].
- L. Blanchet, “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries,” Living Rev. Rel. 17 (2014) 2, arXiv:1310.1528 [gr-qc].
- T. Hinderer, “Tidal Love numbers of neutron stars,” Astrophys. J. 677 (2008) 1216–1220, arXiv:0711.2420 [astro-ph]. [Erratum: Astrophys.J. 697, 964 (2009)].
- T. Damour and A. Nagar, “Relativistic tidal properties of neutron stars,” Phys. Rev. D 80 (2009) 084035, arXiv:0906.0096 [gr-qc].
- T. Binnington and E. Poisson, “Relativistic theory of tidal Love numbers,” Phys. Rev. D 80 (2009) 084018, arXiv:0906.1366 [gr-qc].
- E. E. Flanagan and T. Hinderer, “Constraining neutron star tidal Love numbers with gravitational wave detectors,” Phys. Rev. D 77 (2008) 021502, arXiv:0709.1915 [astro-ph].
- T. Damour, A. Nagar, and L. Villain, “Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals,” Phys. Rev. D 85 (2012) 123007, arXiv:1203.4352 [gr-qc].
- M. Favata, “Systematic parameter errors in inspiraling neutron star binaries,” Phys. Rev. Lett. 112 (2014) 101101, arXiv:1310.8288 [gr-qc].
- V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo, “Testing strong-field gravity with tidal Love numbers,” Phys. Rev. D 95 no. 8, (2017) 084014, arXiv:1701.01116 [gr-qc]. [Addendum: Phys.Rev.D 95, 089901 (2017)].
- T. Katagiri, T. Ikeda, and V. Cardoso, “Parametrized Love numbers of nonrotating black holes,” Phys. Rev. D 109 no. 4, (2024) 044067, arXiv:2310.19705 [gr-qc].
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “On the Progenitor of Binary Neutron Star Merger GW170817,” Astrophys. J. Lett. 850 no. 2, (2017) L40, arXiv:1710.05838 [astro-ph.HE].
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GW170817: Measurements of neutron star radii and equation of state,” Phys. Rev. Lett. 121 no. 16, (2018) 161101, arXiv:1805.11581 [gr-qc].
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Properties of the binary neutron star merger GW170817,” Phys. Rev. X 9 no. 1, (2019) 011001, arXiv:1805.11579 [gr-qc].
- B. Kol and M. Smolkin, “Black hole stereotyping: Induced gravito-static polarization,” JHEP 02 (2012) 010, arXiv:1110.3764 [hep-th].
- L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Static response and Love numbers of Schwarzschild black holes,” JCAP 04 (2021) 052, arXiv:2010.00593 [hep-th].
- A. Le Tiec, M. Casals, and E. Franzin, “Tidal Love Numbers of Kerr Black Holes,” Phys. Rev. D 103 no. 8, (2021) 084021, arXiv:2010.15795 [gr-qc].
- A. Le Tiec and M. Casals, “Spinning Black Holes Fall in Love,” Phys. Rev. Lett. 126 no. 13, (2021) 131102, arXiv:2007.00214 [gr-qc].
- H. S. Chia, “Tidal deformation and dissipation of rotating black holes,” Phys. Rev. D 104 no. 2, (2021) 024013, arXiv:2010.07300 [gr-qc].
- P. Charalambous, S. Dubovsky, and M. M. Ivanov, “On the Vanishing of Love Numbers for Kerr Black Holes,” JHEP 05 (2021) 038, arXiv:2102.08917 [hep-th].
- V. Cardoso, M. Kimura, A. Maselli, and L. Senatore, “Black Holes in an Effective Field Theory Extension of General Relativity,” Phys. Rev. Lett. 121 no. 25, (2018) 251105, arXiv:1808.08962 [gr-qc].
- K. Chakravarti, S. Chakraborty, S. Bose, and S. SenGupta, “Tidal Love numbers of black holes and neutron stars in the presence of higher dimensions: Implications of GW170817,” Phys. Rev. D 99 no. 2, (2019) 024036, arXiv:1811.11364 [gr-qc].
- V. Cardoso, L. Gualtieri, and C. J. Moore, “Gravitational waves and higher dimensions: Love numbers and Kaluza-Klein excitations,” Phys. Rev. D 100 no. 12, (2019) 124037, arXiv:1910.09557 [gr-qc].
- S. M. Brown, “Tidal Deformability of Neutron Stars in Scalar-tensor Theories of Gravity,” Astrophys. J. 958 no. 2, (2023) 125, arXiv:2210.14025 [gr-qc].
- V. De Luca, J. Khoury, and S. S. C. Wong, “Implications of the weak gravity conjecture for tidal Love numbers of black holes,” Phys. Rev. D 108 no. 4, (2023) 044066, arXiv:2211.14325 [hep-th].
- N. Uchikata, S. Yoshida, and P. Pani, “Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells,” Phys. Rev. D 94 no. 6, (2016) 064015, arXiv:1607.03593 [gr-qc].
- A. Addazi, A. Marciano, and N. Yunes, “Can we probe Planckian corrections at the horizon scale with gravitational waves?,” Phys. Rev. Lett. 122 no. 8, (2019) 081301, arXiv:1810.10417 [gr-qc].
- A. Maselli, P. Pani, V. Cardoso, T. Abdelsalhin, L. Gualtieri, and V. Ferrari, “From micro to macro and back: probing near-horizon quantum structures with gravitational waves,” Class. Quant. Grav. 36 no. 16, (2019) 167001, arXiv:1811.03689 [gr-qc].
- V. Cardoso and P. Pani, “Testing the nature of dark compact objects: a status report,” Living Rev. Rel. 22 no. 1, (2019) 4, arXiv:1904.05363 [gr-qc].
- V. Cardoso, A. del Rio, and M. Kimura, “Distinguishing black holes from horizonless objects through the excitation of resonances during inspiral,” Phys. Rev. D 100 (2019) 084046, arXiv:1907.01561 [gr-qc]. [Erratum: Phys.Rev.D 101, 069902 (2020)].
- S. Chakraborty, E. Maggio, M. Silvestrini, and P. Pani, “Dynamical tidal Love numbers of Kerr-like compact objects,” arXiv:2310.06023 [gr-qc].
- V. Cardoso and F. Duque, “Environmental effects in gravitational-wave physics: Tidal deformability of black holes immersed in matter,” Phys. Rev. D 101 no. 6, (2020) 064028, arXiv:1912.07616 [gr-qc].
- V. De Luca and P. Pani, “Tidal deformability of dressed black holes and tests of ultralight bosons in extended mass ranges,” JCAP 08 (2021) 032, arXiv:2106.14428 [gr-qc].
- V. De Luca, A. Maselli, and P. Pani, “Modeling frequency-dependent tidal deformability for environmental black hole mergers,” Phys. Rev. D 107 no. 4, (2023) 044058, arXiv:2212.03343 [gr-qc].
- T. Katagiri, H. Nakano, and K. Omukai, “Stability of relativistic tidal response against small potential modification,” Phys. Rev. D 108 no. 8, (2023) 084049, arXiv:2304.04551 [gr-qc].
- L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Ladder symmetries of black holes. Implications for love numbers and no-hair theorems,” JCAP 01 no. 01, (2022) 032, arXiv:2105.01069 [hep-th].
- J. Ben Achour, E. R. Livine, S. Mukohyama, and J.-P. Uzan, “Hidden symmetry of the static response of black holes: applications to Love numbers,” JHEP 07 (2022) 112, arXiv:2202.12828 [gr-qc].
- L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Near-zone symmetries of Kerr black holes,” JHEP 09 (2022) 049, arXiv:2203.08832 [hep-th].
- T. Katagiri, M. Kimura, H. Nakano, and K. Omukai, “Vanishing Love numbers of black holes in general relativity: From spacetime conformal symmetry of a two-dimensional reduced geometry,” Phys. Rev. D 107 no. 12, (2023) 124030, arXiv:2209.10469 [gr-qc].
- R. Berens, L. Hui, and Z. Sun, “Ladder symmetries of black holes and de Sitter space: love numbers and quasinormal modes,” JCAP 06 (2023) 056, arXiv:2212.09367 [hep-th].
- G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int.J.Theor.Phys. 10 (1974) 363–384.
- C. Deffayet, X. Gao, D. Steer, and G. Zahariade, “From k-essence to generalised Galileons,” Phys.Rev. D84 (2011) 064039, arXiv:1103.3260 [hep-th].
- T. Kobayashi, M. Yamaguchi, and J. Yokoyama, “Generalized G-inflation: Inflation with the most general second-order field equations,” Prog.Theor.Phys. 126 (2011) 511–529, arXiv:1105.5723 [hep-th].
- C. Brans and R. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys.Rev. 124 (1961) 925–935.
- C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt, “A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration,” Phys.Rev.Lett. 85 (2000) 4438–4441, arXiv:astro-ph/0004134 [astro-ph].
- C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt, “Essentials of k essence,” Phys.Rev. D63 (2001) 103510, arXiv:astro-ph/0006373 [astro-ph].
- R. P. Woodard, “Ostrogradsky’s theorem on Hamiltonian instability,” Scholarpedia 10 no. 8, (2015) 32243, arXiv:1506.02210 [hep-th].
- H. Motohashi and T. Suyama, “Third order equations of motion and the Ostrogradsky instability,” Phys. Rev. D 91 no. 8, (2015) 085009, arXiv:1411.3721 [physics.class-ph].
- D. Langlois and K. Noui, “Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability,” JCAP 1602 no. 02, (2016) 034, arXiv:1510.06930 [gr-qc].
- H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi, and D. Langlois, “Healthy degenerate theories with higher derivatives,” JCAP 07 (2016) 033, arXiv:1603.09355 [hep-th].
- R. Klein and D. Roest, “Exorcising the Ostrogradsky ghost in coupled systems,” JHEP 07 (2016) 130, arXiv:1604.01719 [hep-th].
- H. Motohashi, T. Suyama, and M. Yamaguchi, “Ghost-free theory with third-order time derivatives,” J. Phys. Soc. Jap. 87 (2018) 063401, arXiv:1711.08125 [hep-th].
- H. Motohashi, T. Suyama, and M. Yamaguchi, “Ghost-free theories with arbitrary higher-order time derivatives,” JHEP 06 (2018) 133, arXiv:1804.07990 [hep-th].
- M. Crisostomi, K. Koyama, and G. Tasinato, “Extended Scalar-Tensor Theories of Gravity,” JCAP 04 (2016) 044, arXiv:1602.03119 [hep-th].
- J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui, and G. Tasinato, “Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order,” JHEP 12 (2016) 100, arXiv:1608.08135 [hep-th].
- K. Takahashi and T. Kobayashi, “Extended mimetic gravity: Hamiltonian analysis and gradient instabilities,” JCAP 11 no. 11, (2017) 038, arXiv:1708.02951 [gr-qc].
- D. Langlois, M. Mancarella, K. Noui, and F. Vernizzi, “Mimetic gravity as DHOST theories,” JCAP 02 (2019) 036, arXiv:1802.03394 [gr-qc].
- A. De Felice, D. Langlois, S. Mukohyama, K. Noui, and A. Wang, “Generalized instantaneous modes in higher-order scalar-tensor theories,” Phys. Rev. D 98 no. 8, (2018) 084024, arXiv:1803.06241 [hep-th].
- A. De Felice, S. Mukohyama, and K. Takahashi, “Nonlinear definition of the shadowy mode in higher-order scalar-tensor theories,” JCAP 12 no. 12, (2021) 020, arXiv:2110.03194 [gr-qc].
- A. De Felice, S. Mukohyama, and K. Takahashi, “Avoidance of Strong Coupling in General Relativity Solutions with a Timelike Scalar Profile in a Class of Ghost-Free Scalar-Tensor Theories,” Phys. Rev. Lett. 129 no. 3, (2022) 031103, arXiv:2204.02032 [gr-qc].
- K. Takahashi, H. Motohashi, and M. Minamitsuji, “Invertible disformal transformations with higher derivatives,” Phys. Rev. D 105 no. 2, (2022) 024015, arXiv:2111.11634 [gr-qc].
- K. Takahashi, “Invertible disformal transformations with arbitrary higher-order derivatives,” Phys. Rev. D 108 no. 8, (2023) 084031, arXiv:2307.08814 [gr-qc].
- K. Takahashi, M. Minamitsuji, and H. Motohashi, “Generalized disformal Horndeski theories: Cosmological perturbations and consistent matter coupling,” PTEP 2023 no. 1, (2023) 013E01, arXiv:2209.02176 [gr-qc].
- K. Takahashi, M. Minamitsuji, and H. Motohashi, “Effective description of generalized disformal theories,” JCAP 07 (2023) 009, arXiv:2304.08624 [gr-qc].
- G. Domènech, S. Mukohyama, R. Namba, A. Naruko, R. Saitou, and Y. Watanabe, “Derivative-dependent metric transformation and physical degrees of freedom,” Phys. Rev. D 92 no. 8, (2015) 084027, arXiv:1507.05390 [hep-th].
- K. Takahashi, H. Motohashi, T. Suyama, and T. Kobayashi, “General invertible transformation and physical degrees of freedom,” Phys. Rev. D 95 no. 8, (2017) 084053, arXiv:1702.01849 [gr-qc].
- A. Naruko, R. Saito, N. Tanahashi, and D. Yamauchi, “Ostrogradsky mode in scalar–tensor theories with higher-order derivative couplings to matter,” PTEP 2023 no. 5, (2023) 053E02, arXiv:2209.02252 [gr-qc].
- K. Takahashi, R. Kimura, and H. Motohashi, “Consistency of matter coupling in modified gravity,” Phys. Rev. D 107 no. 4, (2023) 044018, arXiv:2212.13391 [gr-qc].
- T. Ikeda, K. Takahashi, and T. Kobayashi, “Consistency of higher-derivative couplings to matter fields in scalar-tensor gravity,” Phys. Rev. D 108 no. 4, (2023) 044006, arXiv:2302.03418 [gr-qc].
- N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, “Ghost condensation and a consistent infrared modification of gravity,” JHEP 05 (2004) 074, arXiv:hep-th/0312099.
- N. Arkani-Hamed, P. Creminelli, S. Mukohyama, and M. Zaldarriaga, “Ghost inflation,” JCAP 04 (2004) 001, arXiv:hep-th/0312100.
- C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, “The Effective Field Theory of Inflation,” JHEP 0803 (2008) 014, arXiv:0709.0293 [hep-th].
- G. Gubitosi, F. Piazza, and F. Vernizzi, “The Effective Field Theory of Dark Energy,” JCAP 1302 (2013) 032, arXiv:1210.0201 [hep-th].
- S. Mukohyama and V. Yingcharoenrat, “Effective field theory of black hole perturbations with timelike scalar profile: formulation,” JCAP 09 (2022) 010, arXiv:2204.00228 [hep-th].
- S. Mukohyama, K. Takahashi, and V. Yingcharoenrat, “Generalized Regge-Wheeler equation from Effective Field Theory of black hole perturbations with a timelike scalar profile,” JCAP 10 (2022) 050, arXiv:2208.02943 [gr-qc].
- G. Franciolini, L. Hui, R. Penco, L. Santoni, and E. Trincherini, “Effective Field Theory of Black Hole Quasinormal Modes in Scalar-Tensor Theories,” JHEP 02 (2019) 127, arXiv:1810.07706 [hep-th].
- L. Hui, A. Podo, L. Santoni, and E. Trincherini, “Effective Field Theory for the perturbations of a slowly rotating black hole,” JHEP 12 (2021) 183, arXiv:2111.02072 [hep-th].
- S. Mukohyama, K. Takahashi, K. Tomikawa, and V. Yingcharoenrat, “Quasinormal modes from EFT of black hole perturbations with timelike scalar profile,” JCAP 07 (2023) 050, arXiv:2304.14304 [gr-qc].
- R. A. Konoplya, “Quasinormal modes and grey-body factors of regular black holes with a scalar hair from the Effective Field Theory,” JCAP 07 (2023) 001, arXiv:2305.09187 [gr-qc].
- Cambridge University Press, 2014.
- G. Creci, T. Hinderer, and J. Steinhoff, “Tidal response from scattering and the role of analytic continuation,” Phys. Rev. D 104 no. 12, (2021) 124061, arXiv:2108.03385 [gr-qc]. [Erratum: Phys.Rev.D 105, 109902 (2022)].
- B. Finelli, G. Goon, E. Pajer, and L. Santoni, “The Effective Theory of Shift-Symmetric Cosmologies,” JCAP 05 (2018) 060, arXiv:1802.01580 [hep-th].
- J. Khoury, T. Noumi, M. Trodden, and S. S. C. Wong, “Stability of hairy black holes in shift-symmetric scalar-tensor theories via the effective field theory approach,” JCAP 04 (2023) 035, arXiv:2208.02823 [hep-th].
- K. Aoki, M. A. Gorji, S. Mukohyama, and K. Takahashi, “The effective field theory of vector-tensor theories,” JCAP 01 no. 01, (2022) 059, arXiv:2111.08119 [hep-th].
- K. Aoki, M. A. Gorji, S. Mukohyama, K. Takahashi, and V. Yingcharoenrat, “Effective field theory of black hole perturbations in vector-tensor gravity,” JCAP 03 (2024) 012, arXiv:2311.06767 [hep-th].
- G. Lemaître, “The expanding universe,” Annales Soc. Sci. Bruxelles A 53 (1933) 51–85.
- S. Mukohyama, “Black holes in the ghost condensate,” Phys. Rev. D 71 (2005) 104019, arXiv:hep-th/0502189.
- J. Khoury, M. Trodden, and S. S. C. Wong, “Existence and instability of hairy black holes in shift-symmetric Horndeski theories,” JCAP 11 (2020) 044, arXiv:2007.01320 [astro-ph.CO].
- K. Takahashi and H. Motohashi, “Black hole perturbations in DHOST theories: master variables, gradient instability, and strong coupling,” JCAP 08 (2021) 013, arXiv:2106.07128 [gr-qc].
- H. Motohashi, T. Suyama, and K. Takahashi, “Fundamental theorem on gauge fixing at the action level,” Phys. Rev. D 94 no. 12, (2016) 124021, arXiv:1608.00071 [gr-qc].
- Virgo, LIGO Scientific Collaboration, B. P. Abbott et al., “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119 no. 16, (2017) 161101, arXiv:1710.05832 [gr-qc].
- B. P. Abbott et al., “Multi-messenger Observations of a Binary Neutron Star Merger,” Astrophys. J. 848 no. 2, (2017) L12, arXiv:1710.05833 [astro-ph.HE].
- Virgo, Fermi-GBM, INTEGRAL, LIGO Scientific Collaboration, B. P. Abbott et al., “Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A,” Astrophys. J. 848 no. 2, (2017) L13, arXiv:1710.05834 [astro-ph.HE].
- K. Nakashi, M. Kimura, H. Motohashi, and K. Takahashi, “Black hole perturbations in higher-order scalar–tensor theories: initial value problem and dynamical stability,” Class. Quant. Grav. 39 no. 17, (2022) 175003, arXiv:2204.05054 [gr-qc].
- K. Nakashi, M. Kimura, H. Motohashi, and K. Takahashi, “Black hole ringdown from physically sensible initial value problem in higher-order scalar-tensor theories,” Phys. Rev. D 109 no. 2, (2024) 024034, arXiv:2310.09839 [gr-qc].
- M. M. Riva, L. Santoni, N. Savić, and F. Vernizzi, “Vanishing of Nonlinear Tidal Love Numbers of Schwarzschild Black Holes,” arXiv:2312.05065 [gr-qc].
- M. M. Ivanov and Z. Zhou, “Revisiting the matching of black hole tidal responses: A systematic study of relativistic and logarithmic corrections,” Phys. Rev. D 107 no. 8, (2023) 084030, arXiv:2208.08459 [hep-th].
- M. M. Ivanov and Z. Zhou, “Vanishing of Black Hole Tidal Love Numbers from Scattering Amplitudes,” Phys. Rev. Lett. 130 no. 9, (2023) 091403, arXiv:2209.14324 [hep-th].
- H. Motohashi and M. Minamitsuji, “General Relativity solutions in modified gravity,” Phys. Lett. B 781 (2018) 728–734, arXiv:1804.01731 [gr-qc].
- K. Takahashi and H. Motohashi, “General Relativity solutions with stealth scalar hair in quadratic higher-order scalar-tensor theories,” JCAP 06 (2020) 034, arXiv:2004.03883 [gr-qc].
- E. Babichev, C. Charmousis, G. Esposito-Farèse, and A. Lehébel, “Hamiltonian unboundedness vs stability with an application to Horndeski theory,” Phys. Rev. D 98 no. 10, (2018) 104050, arXiv:1803.11444 [gr-qc].
- K. Takahashi, H. Motohashi, and M. Minamitsuji, “Linear stability analysis of hairy black holes in quadratic degenerate higher-order scalar-tensor theories: Odd-parity perturbations,” Phys. Rev. D 100 no. 2, (2019) 024041, arXiv:1904.03554 [gr-qc].
- C. de Rham and J. Zhang, “Perturbations of stealth black holes in degenerate higher-order scalar-tensor theories,” Phys. Rev. D 100 no. 12, (2019) 124023, arXiv:1907.00699 [hep-th].
- H. Motohashi and S. Mukohyama, “Weakly-coupled stealth solution in scordatura degenerate theory,” JCAP 01 (2020) 030, arXiv:1912.00378 [gr-qc].
- K. Tomikawa and T. Kobayashi, “Perturbations and quasinormal modes of black holes with time-dependent scalar hair in shift-symmetric scalar-tensor theories,” Phys. Rev. D 103 no. 8, (2021) 084041, arXiv:2101.03790 [gr-qc].
- A. De Felice, S. Mukohyama, and K. Takahashi, “Approximately stealth black hole in higher-order scalar-tensor theories,” JCAP 03 (2023) 050, arXiv:2212.13031 [gr-qc].
- S. Mano, H. Suzuki, and E. Takasugi, “Analytic solutions of the Teukolsky equation and their low frequency expansions,” Prog. Theor. Phys. 95 (1996) 1079–1096, arXiv:gr-qc/9603020.
- S. Mano, H. Suzuki, and E. Takasugi, “Analytic solutions of the Regge-Wheeler equation and the postMinkowskian expansion,” Prog. Theor. Phys. 96 (1996) 549–566, arXiv:gr-qc/9605057.
- S. Mano and E. Takasugi, “Analytic solutions of the Teukolsky equation and their properties,” Prog. Theor. Phys. 97 (1997) 213–232, arXiv:gr-qc/9611014.
- V. Cardoso, M. Kimura, A. Maselli, E. Berti, C. F. B. Macedo, and R. McManus, “Parametrized black hole quasinormal ringdown: Decoupled equations for nonrotating black holes,” Phys. Rev. D 99 no. 10, (2019) 104077, arXiv:1901.01265 [gr-qc].
- V. De Luca, J. Khoury, and S. S. C. Wong, “Nonlinearities in the tidal Love numbers of black holes,” Phys. Rev. D 108 no. 2, (2023) 024048, arXiv:2305.14444 [gr-qc].
- W. Rudin, Principles of Mathematical Analysis. International series in pure and applied mathematics. McGraw-Hill, 1976. https://books.google.co.jp/books?id=kwqzPAAACAAJ.
- S. A. Hayward, “Formation and evaporation of regular black holes,” Phys. Rev. Lett. 96 (2006) 031103, arXiv:gr-qc/0506126.
- H. Maeda, “Quest for realistic non-singular black-hole geometries: regular-center type,” JHEP 11 (2022) 108, arXiv:2107.04791 [gr-qc].
- V. P. Frolov, “Information loss problem and a ‘black hole’ model with a closed apparent horizon,” JHEP 05 (2014) 049, arXiv:1402.5446 [hep-th].
- E. Babichev, C. Charmousis, A. Cisterna, and M. Hassaine, “Regular black holes via the Kerr-Schild construction in DHOST theories,” JCAP 06 (2020) 049, arXiv:2004.00597 [hep-th].