Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Phase Transitions in Many-Dipole Light-Matter Systems (2405.10711v1)

Published 17 May 2024 in quant-ph

Abstract: A potential phase transition between a normal ground state and a photon-condensed ground state in many-dipole light-matter systems is a topic of considerable controversy, exasperated by conflicting no-go and counter no-go theorems and often ill-defined models. We clarify this long-lasting debate by analyzing two specific arrangements of atoms, including a 3D cubic lattice and a cavity-embedded square lattice layer, which provides a physical model for single-mode cavity QED with coupled dipoles in the thermodynamic limit. These models are shown to significantly differ from the standard Dicke model and, in the thermodynamic limit, give rise to renormalized Hopfield models. We show that a ferroelectric phase transition can (in principle) still occur and the description of the abnormal phase beyond the critical point requires the inclusion of nonlinear terms in the Holstein-Primakoff mapping. We also show how our model agrees with recent experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev., vol. 93, pp. 99–110, Jan 1954.
  2. K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model,” Annals of Physics, vol. 76, no. 2, pp. 360–404, 1973.
  3. W. R. Mallory, “Solution of a multiatom radiation model using the bargmann realization of the radiation field,” Phys. Rev., vol. 188, pp. 1976–1987, Dec 1969.
  4. Y. K. Wang and F. T. Hioe, “Phase transition in the dicke model of superradiance,” Phys. Rev. A, vol. 7, pp. 831–836, Mar 1973.
  5. F. T. Hioe, “Phase transitions in some generalized dicke models of superradiance,” Phys. Rev. A, vol. 8, pp. 1440–1445, Sep 1973.
  6. K. Rzażewski, K. Wódkiewicz, and W. Żakowicz, “Phase transitions, two-level atoms, and the A2superscript𝐴2{A}^{2}italic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT term,” Phys. Rev. Lett., vol. 35, pp. 432–434, Aug 1975.
  7. M. Yamanoi, “Influence of omitting the a2 term in the conventional photon-matter-hamiltonian on the photon-field equation,” Physics Letters A, vol. 58, no. 7, pp. 437–439, 1976.
  8. M. Bamba and T. Ogawa, “Stability of polarizable materials against superradiant phase transition,” Phys. Rev. A, vol. 90, p. 063825, Dec 2014.
  9. T. Jaako, Z.-L. Xiang, J. J. Garcia-Ripoll, and P. Rabl, “Ultrastrong-coupling phenomena beyond the dicke model,” Phys. Rev. A, vol. 94, p. 033850, Sep 2016.
  10. D. De Bernardis, T. Jaako, and P. Rabl, “Cavity quantum electrodynamics in the nonperturbative regime,” Phys. Rev. A, vol. 97, p. 043820, Apr 2018.
  11. D. De Bernardis, P. Pilar, T. Jaako, S. De Liberato, and P. Rabl, “Breakdown of gauge invariance in ultrastrong-coupling cavity qed,” Phys. Rev. A, vol. 98, p. 053819, Nov 2018.
  12. Y. Ashida, A. m. c. İmamoğlu, J. Faist, D. Jaksch, A. Cavalleri, and E. Demler, “Quantum electrodynamic control of matter: Cavity-enhanced ferroelectric phase transition,” Phys. Rev. X, vol. 10, p. 041027, Nov 2020.
  13. J. Keeling, “Coulomb interactions, gauge invariance, and phase transitions of the dicke model,” J. Phys.: Condens. Matter, vol. 19, no. 29, p. 295213, 2007.
  14. J. M. Knight, Y. Aharonov, and G. T. C. Hsieh, “Are super-radiant phase transitions possible?,” Phys. Rev. A, vol. 17, pp. 1454–1462, Apr 1978.
  15. G. Mazza and A. Georges, “Superradiant quantum materials,” Phys. Rev. Lett., vol. 122, p. 017401, Jan 2019.
  16. G. M. Andolina, F. M. D. Pellegrino, V. Giovannetti, A. H. MacDonald, and M. Polini, “Cavity quantum electrodynamics of strongly correlated electron systems: A no-go theorem for photon condensation,” Phys. Rev. B, vol. 100, p. 121109, Sep 2019.
  17. K. Lenk and M. Eckstein, “Collective excitations of the u𝑢uitalic_u(1)-symmetric exciton insulator in a cavity,” Phys. Rev. B, vol. 102, p. 205129, Nov 2020.
  18. G. Andolina, F. Pellegrino, A. Mercurio, O. Di Stefano, M. Polini, and S. Savasta, “A non-perturbative no-go theorem for photon condensation in approximate models,” The European Physical Journal Plus, vol. 137, p. 1, Dec 2022.
  19. G. Andolina, F. Pellegrino, V. Giovannetti, A. MacDonald, and M. Polini, “Theory of photon condensation in a spatially varying electromagnetic field,” Phys. Rev. B, vol. 102, p. 125137, Sep 2020.
  20. J. Román-Roche, F. Luis, and D. Zueco, “Photon condensation and enhanced magnetism in cavity qed,” Phys. Rev. Lett., vol. 127, p. 167201, Oct 2021.
  21. L. Garziano, A. Settineri, O. Di Stefano, S. Savasta, and F. Nori, “Gauge invariance of the dicke and hopfield models,” Phys. Rev. A, vol. 102, p. 023718, Aug 2020.
  22. C. Sch’́afer, M. Ruggenthaler, V. Rokaj, and A. Rubio, “Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics,” ACS photonics, vol. 7, no. 4, pp. 975–990, 2020.
  23. S. Hughes, C. Gustin, and F. Nori, “Reconciling quantum and classical spectral theories of ultrastrong coupling: role of cavity bath coupling and gauge corrections,” Optica Quantum, vol. 2, pp. 133–139, Jun 2024.
  24. D. Kim, S. Dasgupta, X. Ma, J.-M. Park, H.-T. Wei, L. Luo, J. Doumani, X. Li, W. Yang, D. Cheng, et al., “Observation of the magnonic dicke superradiant phase transition,” arXiv preprint arXiv:2401.01873, 2024.
  25. A. Vukics, T. Grießer, and P. Domokos, “Elimination of the a𝑎aitalic_a-square problem from cavity qed,” Phys. Rev. Lett., vol. 112, p. 073601, Feb 2014.
  26. A. Stokes and A. Nazir, “Uniqueness of the phase transition in many-dipole cavity quantum electrodynamical systems,” Phys. Rev. Lett., vol. 125, p. 143603, Sep 2020.
  27. G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Resonance energy transfer: The unified theory revisited,” The Journal of Chemical Physics, vol. 119, pp. 2264–2274, 07 2003.
  28. G. A. Jones and D. S. Bradshaw, “Resonance energy transfer: From fundamental theory to recent applications,” Frontiers in Physics, vol. 7, 2019.
  29. A. Vukics and P. Domokos, “Adequacy of the dicke model in cavity qed: A counter-no-go statement,” Phys. Rev. A, vol. 86, p. 053807, Nov 2012.
  30. A. Stokes and A. Nazir, “Implications of gauge freedom for nonrelativistic quantum electrodynamics,” Rev. Mod. Phys., vol. 94, p. 045003, Nov 2022.
  31. C. Emary and T. Brandes, “Chaos and the quantum phase transition in the dicke model,” Phys. Rev. E, vol. 67, p. 066203, Jun 2003.
  32. C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: The dicke model,” Phys. Rev. Lett., vol. 90, p. 044101, Jan 2003.
  33. M. H. Cohen and F. Keffer, “Dipolar sums in the primitive cubic lattices,” Phys. Rev., vol. 99, pp. 1128–1134, Aug 1955.
  34. O. Di Stefano, A. Settineri, V. Macrì, L. Garziano, R. Stassi, S. Savasta, and F. Nori, “Resolution of gauge ambiguities in ultrastrong-coupling cavity QED,” Nat. Phys., vol. 15, p. 803, 2019.
  35. S. Savasta, O. Di Stefano, A. Settineri, D. Zueco, S. Hughes, and F. Nori, “Gauge principle and gauge invariance in two-level systems,” Phys. Rev. A, vol. 103, p. 053703, May 2021.
  36. C. Gustin, S. Franke, and S. Hughes, “Gauge-invariant theory of truncated quantum light-matter interactions in arbitrary media,” Phys. Rev. A, vol. 107, p. 013722, Jan 2023.
  37. N. S. Mueller, Y. Okamura, B. G. M. Vieira, S. Juergensen, H. Lange, E. B. Barros, F. Schulz, and S. Reich, “Deep strong light–matter coupling in plasmonic nanoparticle crystals,” Nature, vol. 583, pp. 780–784, 2020.
  38. P. Nataf and C. Ciuti, “No-go theorem for superradiant quantum phase transitions in cavity qed and counter-example in circuit qed,” Nature Communications, vol. 1, no. 1, p. 72, 2010.
  39. M. O. Scully and M. S. Zubairy, Quantum Optics. Cambridge: Cambridge University Press, 1997.
  40. M. Yamanoi and M. Takatsuji, Coherence and Quantum Optics IV: Proceedings of the Fourth Rochester Conference on Coherence and Quantum Optics. New York: Plenum Press, 1978.
  41. S. Lamowski, C.-R. Mann, F. Hellbach, E. Mariani, G. Weick, and F. Pauly, “Plasmon polaritons in cubic lattices of spherical metallic nanoparticles,” Phys. Rev. B, vol. 97, p. 125409, Mar 2018.
  42. S. Savasta and R. Girlanda, “Quantum description of the input and output electromagnetic fields in a polarizable confined system,” Phys. Rev. A, vol. 53, pp. 2716–2726, Apr 1996.
  43. New York: Wiley, 1989.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com