Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Webs and squabs of conics over finite fields (2405.10710v1)

Published 17 May 2024 in math.CO and math.AG

Abstract: This paper is a contribution towards a solution for the longstanding open problem of classifying linear systems of conics over finite fields initiated by L. E. Dickson in 1908, through his study of the projective equivalence classes of pencils of conics in $\mathrm{PG}(2,q)$, for $q$ odd. In this paper a set of complete invariants is determined for the projective equivalence classes of webs and of squabs of conics in $\mathrm{PG}(2,q)$, both for $q$ odd and even. Our approach is mainly geometric, and involves a comprehensive study of the geometric and combinatorial properties of the Veronese surface in $\mathrm{PG}(5,q)$. The main contribution is the determination of the distribution of the different types of hyperplanes incident with the $K$-orbit representatives of points and lines of $\mathrm{PG}(5,q)$, where $K\cong\mathrm{PGL}(3,q)$, is the subgroup of $\mathrm{PGL}(6,q)$ stabilizing the Veronese surface.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. N. Abdallah, J. Emsalem and A. Iarrobino, “Nets of Conics and associated Artinianalgebras of length 7”, European Journal of Mathematics. 9, (2023), 238583607.
  2. N. Alnajjarine, M. Lavrauw, “ Determining the rank of tensors in 𝔽2q⊗𝔽3q⊗𝔽3qtensor-productsuperscriptsubscript𝔽2𝑞superscriptsubscript𝔽3𝑞superscriptsubscript𝔽3𝑞\mathbb{F}_{2}^{q}\otimes\mathbb{F}_{3}^{q}\otimes\mathbb{F}_{3}^{q}blackboard_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT ⊗ blackboard_F start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT ⊗ blackboard_F start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT” , in: D. Slamanig, E. Tsigaridas, Z. Zafeirakopoulos (Eds.), MACIS 2019: Mathematical Aspects of Computer and Information Sciences, in: Lecture Notes in Computer Science, vol.11989, Springer, Cham, 2020.
  3. N. Alnajjarine, M. Lavrauw, T. Popiel, “ Solids in the space of the Veronese surface in even characteris- tic.”Finite Fields and Their Applications. 83, (2022), 102068.
  4. N. Alnajjarine, M. Lavrauw, “ A classification of planes intersecting the Veronese surface over finite fields of even order.”Designs, Codes and Cryptography. 83, (2023), https://doi.org/10.1007/s10623-023-01194-9.
  5. E. Berlekamp, H. Rumsey and G. Solomon G, “On the solution of algebraic equations over finite fields”, Information and Control 10, (1967), 553–564.
  6. A. Campbell, “Pencils of conics in the Galois fields of order 2nsuperscript2𝑛2^{n}2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT”, Amer. J. Math. 49, (1927), 401–406.
  7. A. Campbell, “Nets of conics in the Galois field of order 2nsuperscript2𝑛2^{n}2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT”, Bull. Amer. Math. Soc. 34, (1928), 481–489.
  8. L. E. Dickson, “On families of quadratic forms in a general field”, Quarterly J. Pure Appl. Math. 45, (1908), 316–333.
  9. General Galois geometries. London : Springer, (1991).
  10. C. Jordan, “Réduction d’un réseau de formes quadratiques ou bilinéaires: première partie”, J. Math. Pures Appl. (1906), 403–438.
  11. C. Jordan, “Réduction d’un réseau de formes quadratiques ou bilinéaires: deuxième partie”, J. Math. Pures Appl. (1907), 5–51.
  12. M. Lavrauw, “Finite semifields and non-singular tensors”, Des. Codes Cryptogr. 68, (2013), 205–227.
  13. M. Lavrauw and T. Popiel, “The symmetric representation of lines in PG⁢(𝔽q3⊗𝔽q3)PGtensor-productsuperscriptsubscript𝔽𝑞3superscriptsubscript𝔽𝑞3\mathrm{PG}(\mathbb{F}_{q}^{3}\otimes\mathbb{F}_{q}^{3})roman_PG ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ⊗ blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT )”, Discrete Math. 343, (2020), 111775.
  14. M. Lavrauw, T. Popiel and J. Sheekey, “Nets of conics of rank one in PG⁢(2,q)PG2𝑞\mathrm{PG}(2,q)roman_PG ( 2 , italic_q ), q𝑞qitalic_q odd”, J. Geom. 111, (2020), 36.
  15. M. Lavrauw, T. Popiel and J. Sheekey, “Combinatorial invariants for nets of conics in PG⁢(2,q)PG2𝑞\mathrm{PG}(2,q)roman_PG ( 2 , italic_q )”, Des. Codes. Cryptogr. (2021), https://doi.org/10.1007/s10623-021-00881-9.
  16. M. Lavrauw and J. Sheekey, “Canonical forms of 2×3×32332\times 3\times 32 × 3 × 3 tensors over the real field, algebraically closed fields, and finite fields”, Linear Algebra Appl. 476, (2015), 133–147.
  17. C. Wall, “Nets of conics”, Math. Proc. Cambridge Philos. Soc. 81, (1977), 351–364.
  18. A. Wilson, “The canonical Types of Nets of Modular Conics”, Amer. J. Math. 36, (1914), 187–210.

Summary

We haven't generated a summary for this paper yet.