Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resolving Symmetry Ambiguity in Correspondence-based Methods for Instance-level Object Pose Estimation (2405.10557v1)

Published 17 May 2024 in cs.CV

Abstract: Estimating the 6D pose of an object from a single RGB image is a critical task that becomes additionally challenging when dealing with symmetric objects. Recent approaches typically establish one-to-one correspondences between image pixels and 3D object surface vertices. However, the utilization of one-to-one correspondences introduces ambiguity for symmetric objects. To address this, we propose SymCode, a symmetry-aware surface encoding that encodes the object surface vertices based on one-to-many correspondences, eliminating the problem of one-to-one correspondence ambiguity. We also introduce SymNet, a fast end-to-end network that directly regresses the 6D pose parameters without solving a PnP problem. We demonstrate faster runtime and comparable accuracy achieved by our method on the T-LESS and IC-BIN benchmarks of mostly symmetric objects. Our source code will be released upon acceptance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Y. Su, J. Rambach, N. Minaskan, P. Lesur, A. Pagani, and D. Stricker, “Deep multi-state object pose estimation for augmented reality assembly,” in 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct).   IEEE, 2019, pp. 222–227.
  2. Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker, and F. Tombari, “Opa-3d: Occlusion-aware pixel-wise aggregation for monocular 3d object detection,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1327–1334, 2023.
  3. Y. Lin, Y. Su, P. Nathan, S. Inuganti, Y. Di, M. Sundermeyer, F. Manhardt, D. Stricker, J. Rambach, and Y. Zhang, “Hipose: Hierarchical binary surface encoding and correspondence pruning for RGB-d 6dof object pose estimation,” in Conference on Computer Vision and Pattern Recognition 2024, 2024.
  4. G. Wang, F. Manhardt, F. Tombari, and X. Ji, “Gdr-net: Geometry-guided direct regression network for monocular 6d object pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 611–16 621.
  5. Y. Su, M. Saleh, T. Fetzer, J. Rambach, N. Navab, B. Busam, D. Stricker, and F. Tombari, “Zebrapose: Coarse to fine surface encoding for 6dof object pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6738–6748.
  6. Vincent, Lepetit, Francesc, Moreno-NoguerPascal, and Fua, “Epnp: An accurate o(n) solution to the pnp problem,” International Journal of Computer Vision, 2009.
  7. Y. Di, F. Manhardt, G. Wang, X. Ji, N. Navab, and F. Tombari, “So-pose: Exploiting self-occlusion for direct 6d pose estimation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 12 396–12 405.
  8. R. L. Haugaard and A. G. Buch, “Surfemb: Dense and continuous correspondence distributions for object pose estimation with learnt surface embeddings,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6749–6758.
  9. G. Pitteri, M. Ramamonjisoa, S. Ilic, and V. Lepetit, “On object symmetries and 6d pose estimation from images,” in 2019 International conference on 3D vision (3DV).   IEEE, 2019, pp. 614–622.
  10. Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic, “Cosypose: Consistent multi-view multi-object 6d pose estimation,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16.   Springer, 2020, pp. 574–591.
  11. N. Mo, W. Gan, N. Yokoya, and S. Chen, “Es6d: A computation efficient and symmetry-aware 6d pose regression framework,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6718–6727.
  12. J. Richter-Klug and U. Frese, “Handling object symmetries in cnn-based pose estimation,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 13 850–13 856.
  13. T. Hodan, D. Barath, and J. Matas, “Epos: Estimating 6d pose of objects with symmetries,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11 703–11 712.
  14. T. Hodan, M. Sundermeyer, Y. Labbe, V. N. Nguyen, G. Wang, E. Brachmann, B. Drost, V. Lepetit, C. Rother, and J. Matas, “Bop challenge 2023 on detection, segmentation and pose estimation of seen and unseen rigid objects,” arXiv preprint arXiv:2403.09799, 2024.
  15. Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of rotation representations in neural networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5745–5753.
  16. Z. Li, G. Wang, and X. Ji, “Cdpn: Coordinates-based disentangled pose network for real-time rgb-based 6-dof object pose estimation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 7678–7687.
  17. Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes,” 2018.
  18. T. Hodan, P. Haluza, S. Obdrzalek, J. Matas, M. Lourakis, and X. Zabulis, “T-less: An rgb-d dataset for 6d pose estimation of texture-less objects,” IEEE, 2017.
  19. A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T. Kim, “Recovering 6d object pose and predicting next-best-view in the crowd,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).   Los Alamitos, CA, USA: IEEE Computer Society, jun 2016, pp. 3583–3592.
  20. M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel, “Implicit 3d orientation learning for 6d object detection from rgb images,” in Proceedings of the european conference on computer vision (ECCV), 2018, pp. 699–715.
  21. K. Park, T. Patten, and M. Vincze, “Pix2pose: Pixel-wise coordinate regression of objects for 6d pose estimation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 7668–7677.
  22. Y. Wen, H. Pan, L. Yang, and W. Wang, “Edge enhanced implicit orientation learning with geometric prior for 6d pose estimation,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4931–4938, 2020.
  23. Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
  24. I. Shugurov, S. Zakharov, and S. Ilic, “Dpodv2: Dense correspondence-based 6 dof pose estimation,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 11, pp. 7417–7435, 2021.
  25. P. Castro and T.-K. Kim, “Crt-6d: Fast 6d object pose estimation with cascaded refinement transformers,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 5746–5755.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com