Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-scale Semantic Prior Features Guided Deep Neural Network for Urban Street-view Image (2405.10504v2)

Published 17 May 2024 in cs.CV

Abstract: Street-view image has been widely applied as a crucial mobile mapping data source. The inpainting of street-view images is a critical step for street-view image processing, not only for the privacy protection, but also for the urban environment mapping applications. This paper presents a novel Deep Neural Network (DNN), multi-scale semantic prior Feature guided image inpainting Network (MFN) for inpainting street-view images, which generate static street-view images without moving objects (e.g., pedestrians, vehicles). To enhance global context understanding, a semantic prior prompter is introduced to learn rich semantic priors from large pre-trained model. We design the prompter by stacking multiple Semantic Pyramid Aggregation (SPA) modules, capturing a broad range of visual feature patterns. A semantic-enhanced image generator with a decoder is proposed that incorporates a novel cascaded Learnable Prior Transferring (LPT) module at each scale level. For each decoder block, an attention transfer mechanism is applied to capture long-term dependencies, and the semantic prior features are fused with the image features to restore plausible structure in an adaptive manner. Additionally, a background-aware data processing scheme is adopted to prevent the generation of hallucinated objects within holes. Experiments on Apolloscapes and Cityscapes datasets demonstrate better performance than state-of-the-art methods, with MAE, and LPIPS showing improvements of about 9.5% and 41.07% respectively. Visual comparison survey among multi-group person is also conducted to provide performance evaluation, and the results suggest that the proposed MFN offers a promising solution for privacy protection and generate more reliable scene for urban applications with street-view images.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jianshun Zeng (1 paper)
  2. Wang Li (7 papers)
  3. Yanjie Lv (1 paper)
  4. Shuai Gao (6 papers)
  5. YuChu Qin (3 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com