Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven low-dimensional model of a sedimenting flexible fiber (2405.10442v1)

Published 16 May 2024 in physics.flu-dyn and cs.LG

Abstract: The dynamics of flexible filaments entrained in flow, important for understanding many biological and industrial processes, are computationally expensive to model with full-physics simulations. This work describes a data-driven technique to create high-fidelity low-dimensional models of flexible fiber dynamics using machine learning; the technique is applied to sedimentation in a quiescent, viscous Newtonian fluid, using results from detailed simulations as the data set. The approach combines an autoencoder neural network architecture to learn a low-dimensional latent representation of the filament shape, with a neural ODE that learns the evolution of the particle in the latent state. The model was designed to model filaments of varying flexibility, characterized by an elasto-gravitational number $\mathcal{B}$, and was trained on a data set containing the evolution of fibers beginning at set angles of inclination. For the range of $\mathcal{B}$ considered here (100-10000), the filament shape dynamics can be represented with high accuracy with only four degrees of freedom, in contrast to the 93 present in the original bead-spring model used to generate the dynamic trajectories. We predict the evolution of fibers set at arbitrary angles and demonstrate that our data-driven model can accurately forecast the evolution of a fiber at both trained and untrained elasto-gravitational numbers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Y. Yu and M. Graham, Free-space and near-wall dynamics of a flexible sheet sedimenting in stokes flow, arXiv , 2310.08722 (2023).
  2. M. J. Shelley, The dynamics of microtubule/motor-protein assemblies in biology and physics, Annual Review of Fluid Mechanics 48, 487 (2016).
  3. F. Lundell, L. D. Soderberg, and P. H. Alfredsson, Fluid mechanics of papermaking, Annual Review of Fluid Mechanics 43, 195 (2011).
  4. M. D. Graham, Fluid dynamics of dissolved polymer molecules in confined geometries, Annual Review of Fluid Mechanics 43, 273 (2011).
  5. Y. Yu and M. Graham, Coil-stretch-like transition of elastic sheets in extensional flows, Soft Matter 17, 543 (2021).
  6. Y. Yu and M. Graham, Wrinkling and multiplicity in the dynamics of deformable sheets in uniaxial extensional flow, Physical Review Fluids 7, 023601 (2022).
  7. X. Xu and A. Nadim, Deformation and orientation of an elastic slender body sedimenting in a viscous liquid, Physics of Fluids 6, 2889 (1994).
  8. X. Schlagberger and R. R. Netz, Orientation of elastic rods in homogeneous stokes flow, Europhysics Letters 70, 129 (2005).
  9. M. C. Lagomarsino, I. Pagonabarraga, and C. P. Lowe, Hydrodynamic induced deformation and orientation of a microscopic elastic filament, Physical Review Fluids 94, 148104 (2005).
  10. B. Shojaei and H. Dehghani, The sedimentation of slim flexible particles in stokes flow, Indian Journal of Science and Technology 8, 1 (2015).
  11. B. Delmotte, E. Climent, and F. Plouraboué, A general formulation of bead models applied to flexible fibers and active filaments at low reynolds number, Hournal of Computational Physics 286, 14 (2015).
  12. S. Ebrahimi and P. Bagchi, A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks, Scientific Reports 12, 4304 (2023).
  13. A. J. Linot and M. D. Graham, Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations, Chaos 32, 073110 (2022).
  14. R. Vinuesa and S. L. Brunton, Enhancing computational fluid dynamics with machine learning, Nature Computational Science 2, 358 (2022).
  15. A. J. Fox, C. R. Constante-Amores, and M. D. Graham, Predicting extreme events in a data-driven model of turbulent shear flow using an atlas of charts, Physical Review Fluids 8, 094401 (2023).
  16. A. J. Linot and M. D. Graham, Deep learning to discover and predict dynamics on an inertial manifold, Physical Review E 101, 062209 (2020).
  17. N. Omata and S. Shirayama, A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder, AIP Advances 9, 015006 (2019).
  18. C. E. Perez De Jesus and M. D. Graham, Data-driven low-dimensional dynamic model of Kolmogorov flow, arXiv , 2210.16708 (2022).
  19. S. L. Brunton, B. R. Noack, and P. Koumoutsakos, Machine learning for fluid mechanics, Annual Review of Fluid Mechanics 52, 477 (2020).
  20. K. Zeng, A. J. Linot, and M. D. Graham, Data-driven control of spatiotemporal chaos with reduced-order neural ode-based models and reinforcement learning, Proceedings of the Royal Society A 478, 20220297 (2023b).
  21. Z. Ma, Z. Ye, and W. Pan, Fast simulation of particulate suspensions enabled by graph neural network, Computer Methods in Applied Mechanics and Engineering 400, 115496 (2022).
  22. A. M. Słowicka, E. Wajnryb, and M. L. Ekiel-Jeżewska, Lateral migration of flexible fibers in poiseuille flow between two parallel planar solid walls, The European Physical Journal E 36, 31 (2013).
  23. A. M. Słowicka, E. Wajnryb, and M. L. Ekiel-Jeżewska, Dynamics of flexible fibers in shear flow, The Journal of Chemical Physics 143, 124904 (2015).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets