Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Stage Stochastic Optimal Power Flow for Microgrids With Uncertain Wildfire Effects (2405.10435v1)

Published 16 May 2024 in eess.SY and cs.SY

Abstract: Large-scale power outages caused by extreme weather events are one of the major factors weakening grid resilience. In order to prevent the critical infrastructure from cascading failure, power lines are often proactively de-energized under the threat of a progressing wildfire. In this context, the potential of microgrid (MG) functioning in islanded mode can be exploited to enhance the resiliency of the power grid. However, there are numerous uncertainties originating from these types of events and an accurate modeling of the MG is required to harness its full potential. In this paper, we consider the uncertainty in line outages depending on fire propagation and reduced solar power generation due to the particulate matter in wildfire smoke. We formulate a two-stage stochastic MG optimal power flow problem by utilizing a second-order cone relaxation of the DistFlow model. Leveraging an effective approximation of the resistive heat gain, we separate the complicating constraints of dynamic line rating from the resulting optimization problem. Extensive simulation results corroborate the merits of our proposed framework, which is tested on a modified IEEE 22-bus system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. A. Lindstrom and S. Hoff, “U.S. electricity customers experienced eight hours of power interruptions in 2020,” Annu. Elect. Power Ind. Rep., Nov. 2021.
  2. S. Kirshenberg, H. Jackler, J. Eun, B. Oakley, and W. Goldenberg, “Small modular reactors: Adding to resilience at federal facilities,” U.S. Department of Energy (DOE), Tech. Rep., 2017.
  3. S. York, “Smoke from california wildfires decreases solar generation in caiso,” Sept. 2020.
  4. S. Chowdhury, K. Zhu, and Y. Zhang, “Mitigating greenhouse gas emissions through generative adversarial networks based wildfire prediction,” 2021.
  5. Z. Xiaozhi, L. Tao, X. Kan, C. Zhiguo, C. Xiaoming, and R. Ling, “Evaluation of wildfire occurrence along high voltage power line by remote sensing data: A case study in Xianning, Hubei, China,” in 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016, pp. 300–304.
  6. P. Yang, T. Spencer, C. Stripling, D. Shoemate, and N. R. Modala, “Reinforcing wildfire predictive services with timely weather information,” in 2017 25th International Conference on Geoinformatics, 2017, pp. 1–4.
  7. H. Liang, M. Zhang, and H. Wang, “A neural network model for wildfire scale prediction using meteorological factors,” IEEE Access, vol. 7, pp. 176 746–176 755, 2019.
  8. D. N. Trakas and N. D. Hatziargyriou, “Optimal distribution system operation for enhancing resilience against wildfires,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 2260–2271, 2018.
  9. S. Mohagheghi and S. Rebennack, “Optimal resilient power grid operation during the course of a progressing wildfire,” Int. J. Electr. Power Energy Syst., vol. 73, pp. 843–852, 2015.
  10. M. Nazemi and P. Dehghanian, “Powering through wildfires: An integrated solution for enhanced safety and resilience in power grids,” IEEE Trans. Ind. Appl., vol. 58, no. 3, pp. 4192–4202, 2022.
  11. S. Dian, P. Cheng, Q. Ye, J. Wu, R. Luo, C. Wang, D. Hui, N. Zhou, D. Zou, Q. Yu, and X. Gong, “Integrating wildfires propagation prediction into early warning of electrical transmission line outages,” IEEE Access, vol. 7, pp. 27 586–27 603, 2019.
  12. A. Arif, S. Ma, Z. Wang, J. Wang, S. M. Ryan, and C. Chen, “Optimizing service restoration in distribution systems with uncertain repair time and demand,” IEEE Trans. on Power Syst., vol. 33, no. 6, pp. 6828–6838, 2018.
  13. H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, “Stochastic energy management of microgrids during unscheduled islanding period,” IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 1079–1087, 2017.
  14. J. Lee, S. Lee, and K. Lee, “Multistage stochastic optimization for microgrid operation under islanding uncertainty,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 56–66, 2021.
  15. A. Zakaria, F. B. Ismail, M. H. Lipu, and M. A. Hannan, “Uncertainty models for stochastic optimization in renewable energy applications,” Renew. Energy, vol. 145, pp. 1543–1571, 2020.
  16. T. Tapia, A. Lorca, D. Olivares, M. Negrete-Pincetic, and A. J. Lamadrid L, “A robust decision-support method based on optimization and simulation for wildfire resilience in highly renewable power systems,” Eur. J. Oper. Res., vol. 294, no. 2, pp. 723–733, 2021.
  17. E. Craparo, M. Karatas, and D. I. Singham, “A robust optimization approach to hybrid microgrid operation using ensemble weather forecasts,” Appl. Energy, vol. 201, pp. 135–147, 2017.
  18. H. Shuai, J. Fang, X. Ai, Y. Tang, J. Wen, and H. He, “Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2440–2452, 2019.
  19. E. Grover-Silva, M. Heleno, S. Mashayekh, G. Cardoso, R. Girard, and G. Kariniotakis, “A stochastic optimal power flow for scheduling flexible resources in microgrids operation,” Appl. Energy, vol. 229, pp. 201–208, 2018.
  20. A. R. Malekpour and A. Pahwa, “Stochastic networked microgrid energy management with correlated wind generators,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3681–3693, 2017.
  21. D. Wang, J. Qiu, L. Reedman, K. Meng, and L. L. Lai, “Two-stage energy management for networked microgrids with high renewable penetration,” Appl. Energy, vol. 226, pp. 39–48, 2018.
  22. A. Bagheri, C. Zhao, F. Qiu, and J. Wang, “Resilient transmission hardening planning in a high renewable penetration era,” IEEE Trans. Power Syst., vol. 34, no. 2, pp. 873–882, 2019.
  23. A. Gholami, T. Shekari, and S. Grijalva, “Proactive management of microgrids for resiliency enhancement: An adaptive robust approach,” IEEE Trans. Sustain. Energy, vol. 10, no. 1, pp. 470–480, 2019.
  24. J. Son, S. Jeong, H. Park, and C.-E. Park, “The effect of particulate matter on solar photovoltaic power generation over the republic of Korea,” Environ. Res. Lett., vol. 15, May 2020.
  25. L. Yu, M. Zhang, L. Wang, Y. Lu, and J. Li, “Effects of aerosols and water vapour on spatial-temporal variations of the clear-sky surface solar radiation in china,” Atmos. Res., vol. 248, no. 105162, pp. 1491–1502, 2021.
  26. A. J. Ali, L. Zhao, and M. H. Kapourchali, “Data-driven-based analysis and modeling for the impact of wildfire smoke on pv systems,” IEEE Trans. Ind. Appl., pp. 1–10, 2023.
  27. A. J. Ali, L. Zhao, M. H. Kapourchali, and W.-J. Lee, “Development of a quantification method for the impact of wildfire smoke on photovoltaic systems,” in 2023 IEEE/IAS 59th Industrial and Commercial Power Systems Technical Conference (I&CPS), 2023, pp. 1–10.
  28. ——, “The wiggle effect of wildfire smoke on pv systems and frequency stability analysis for low-inertia power grids,” in 2023 IEEE/IAS 59th Industrial and Commercial Power Systems Technical Conference (I&CPS), 2023, pp. 1–8.
  29. N. Rhodes, L. Ntaimo, and L. Roald, “Balancing wildfire risk and power outages through optimized power shut-offs,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3118–3128, 2021.
  30. R. Bayani and S. D. Manshadi, “Resilient expansion planning of electricity grid under prolonged wildfire risk,” IEEE Trans. on Smart Grid, pp. 1–1, 2023.
  31. X. Zhu, B. Zeng, Y. Li, and J. Liu, “Co-optimization of supply and demand resources for load restoration of distribution system under extreme weather,” IEEE Access, vol. 9, pp. 122 907–122 923, 2021.
  32. X. Wang, X. Wang, Y. Zhang, Y. Liu, Y. Duan, and D. D. Micu, “Enhancing resilience of distribution systems considering electric vehicles and network reconfiguration in post-extreme events,” in 2023 10th International Conference on Modern Power Systems (MPS), 2023, pp. 01–06.
  33. A. Arif, Z. Wang, C. Chen, and J. Wang, “Repair and resource scheduling in unbalanced distribution systems using neighborhood search,” IEEE Trans. on Smart Grid, vol. 11, no. 1, pp. 673–685, 2020.
  34. S. Poudel and A. Dubey, “Critical load restoration using distributed energy resources for resilient power distribution system,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 52–63, 2019.
  35. Q. Zhang, Z. Wang, S. Ma, and A. Arif, “Stochastic pre-event preparation for enhancing resilience of distribution systems,” Renew. Sust. Energ. Rev., vol. 152, p. 111636, 2021.
  36. L. Che and M. Shahidehpour, “Adaptive formation of microgrids with mobile emergency resources for critical service restoration in extreme conditions,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 742–753, 2019.
  37. S. Cai, Y. Xie, Q. Wu, M. Zhang, X. Jin, and Z. Xiang, “Distributionally robust microgrid formation approach for service restoration under random contingency,” IEEE Trans. on Smart Grid, vol. 12, no. 6, pp. 4926–4937, 2021.
  38. Y. Liu, Z. Tang, and L. Wu, “On secured spinning reserve deployment of energy-limited resources against contingencies,” IEEE Trans. Power Syst., vol. 37, no. 1, pp. 518–529, 2022.
  39. Z. Li, C. Zang, P. Zeng, H. Yu, and H. Li, “Two-stage stochastic programming based model predictive control strategy for microgrid energy management under uncertainties,” in 2016 Int. Conf. Probab. Methods Appl. Power Syst. (PMAPS), 2016, pp. 1–6.
  40. F. Garcia-Torres, C. Bordons, J. Tobajas, R. Real-Calvo, I. Santiago, and S. Grieu, “Stochastic optimization of microgrids with hybrid energy storage systems for grid flexibility services considering energy forecast uncertainties,” IEEE Trans. Power Syst., vol. 36, no. 6, pp. 5537–5547, 2021.
  41. L. P. Raghav, R. S. Kumar, D. K. Raju, and A. R. Singh, “Optimal energy management of microgrids using quantum teaching learning based algorithm,” IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 4834–4842, 2021.
  42. H. Zhao, H. Lu, B. Li, X. Wang, S. Zhang, and Y. Wang, “Stochastic optimization of microgrid participating day-ahead market operation strategy with consideration of energy storage system and demand response,” Energies, vol. 13, no. 5, p. 1255, 2020.
  43. M. Perry and A. Troccoli, “Impact of a fire burn on solar irradiance and PV power,” Solar Energy, vol. 114, pp. 167–173, 2015.
  44. S. A. Arefifar, Y. A.-R. I. Mohamed, and T. H. M. El-Fouly, “Supply-adequacy-based optimal construction of microgrids in smart distribution systems,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1491–1502, 2012.
  45. J.-L. Rossi, A. Simeoni, B. Moretti, and V. Cancellieri, “An analytical model based on radiative heating for the determination of safety distances for wildland fires,” Fire Saf. J., vol. 46, pp. 520–527, 11 2011.
  46. “IEEE standard for calculating the current-temperature relationship of bare overhead conductors,” IEEE Std 738-2012 (Revision of IEEE Std 738-2006 - Incorporates IEEE Std 738-2012 Cor 1-2013), pp. 1–72, 2013.
  47. M. Farivar and S. H. Low, “Branch flow model: Relaxations and convexification—part i,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2554–2564, 2013.
  48. S. Bose and Y. Zhang, “Load restoration in islanded microgrids: Formulation and solution strategies,” IEEE Trans. on Control of Network Systems, pp. 1–12, 2023.
  49. Electric Reliability Council of Texas (ERCOT), https://www.ercot.com/files/docs/2021/11/12/Native_Load_2021.zip.
  50. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2021. [Online]. Available: https://www.gurobi.com
  51. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.
  52. “A year of solar data.” [Online]. Available: http://dvschroeder.blogspot.com
  53. “Sensor data download tool.” [Online]. Available: https://www.purpleair.com/sensorlist
  54. “The solcast API toolkit.” [Online]. Available: https://toolkit.solcast.com.au/
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com