Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trapped-Ion Quantum Simulation of Electron Transfer Models with Tunable Dissipation (2405.10368v2)

Published 16 May 2024 in quant-ph, cond-mat.quant-gas, physics.atom-ph, and physics.chem-ph

Abstract: Electron transfer is at the heart of many fundamental physical, chemical, and biochemical processes essential for life. The exact simulation of these reactions is often hindered by the large number of degrees of freedom and by the essential role of quantum effects. Here, we experimentally simulate a paradigmatic model of molecular electron transfer using a multispecies trapped-ion crystal, where the donor-acceptor gap, the electronic and vibronic couplings, and the bath relaxation dynamics can all be controlled independently. By manipulating both the ground-state and optical qubits, we observe the real-time dynamics of the spin excitation, measuring the transfer rate in several regimes of adiabaticity and relaxation dynamics. Our results provide a testing ground for increasingly rich models of molecular excitation transfer processes that are relevant for molecular electronics and light-harvesting systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. H. Frauenfelder and P. G. Wolynes, Rate theories and puzzles of hemeprotein kinetics, Science 229, 337 (1985), https://www.science.org/doi/pdf/10.1126/science.4012322 .
  2. P. G. Wolynes, Imaginary time path integral Monte Carlo route to rate coefficients for nonadiabatic barrier crossing, The Journal of Chemical Physics 87, 6559 (1987a), https://pubs.aip.org/aip/jcp/article-pdf/87/11/6559/18968099/6559_1_online.pdf .
  3. C. Zheng, J. A. McCammon, and P. G. Wolynes, Quantum simulation of nuclear rearrangement in electron transfer reactions, Proceedings of the National Academy of Sciences 86, 6441 (1989), https://www.pnas.org/doi/pdf/10.1073/pnas.86.17.6441 .
  4. J. E. Lawrence and D. E. Manolopoulos, Path integral methods for reaction rates in complex systems, Faraday Discuss. 221, 9 (2020).
  5. E. R. Bittner and P. J. Rossky, Quantum decoherence in mixed quantum‐classical systems: Nonadiabatic processes, The Journal of Chemical Physics 103, 8130 (1995), https://pubs.aip.org/aip/jcp/article-pdf/103/18/8130/19079262/8130_1_online.pdf .
  6. L. Wang, M. A. Allodi, and G. S. Engel, Quantum coherences reveal excited-state dynamics in biophysical systems, Nature Reviews Chemistry 3, 477 (2019).
  7. Y. Tanimura, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM), The Journal of Chemical Physics 153, 020901 (2020), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0011599/15575870/020901_1_online.pdf .
  8. N. Makri, Modular path integral methodology for real-time quantum dynamics, The Journal of Chemical Physics 149, 214108 (2018), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.5058223/15551048/214108_1_online.pdf .
  9. S. Kundu and N. Makri, Real-time path integral simulation of exciton-vibration dynamics in light-harvesting bacteriochlorophyll aggregates, The Journal of Physical Chemistry Letters 11, 8783 (2020).
  10. A. Garg, J. N. Onuchic, and V. Ambegaokar, Effect of friction on electron transfer in biomolecules, The Journal of Chemical Physics 83, 4491 (1985).
  11. R. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 811, 265 (1985).
  12. T. D. Lee, F. E. Low, and D. Pines, The motion of slow electrons in a polar crystal, Phys. Rev. 90, 297 (1953).
  13. C. Schneider, D. Porras, and T. Schaetz, Experimental quantum simulations of many-body physics with trapped ions, Reports on Progress in Physics 75, 024401 (2012).
  14. K. D. Demadis, C. M. Hartshorn, and T. J. Meyer, The localized-to-delocalized transition in mixed-valence chemistry, Chemical Reviews 101, 2655 (2001).
  15. D. E. Logan and P. G. Wolynes, Dephasing and anderson localization in topologically disordered systems, Phys. Rev. B 36, 4135 (1987).
  16. M. B. Plenio and S. F. Huelga, Dephasing-assisted transport: quantum networks and biomolecules, New Journal of Physics 10, 113019 (2008).
  17. P. G. Wolynes, Some quantum weirdness in physiology, Proceedings of the National Academy of Sciences 106, 17247 (2009).
  18. S. J. Jang and B. Mennucci, Delocalized excitons in natural light-harvesting complexes, Rev. Mod. Phys. 90, 035003 (2018).
  19. A. Ishizaki and G. R. Fleming, Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature, Proceedings of the National Academy of Sciences 106, 17255 (2009).
  20. I. de Vega and D. Alonso, Dynamics of non-markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017).
  21. P. M. Harrington, E. J. Mueller, and K. W. Murch, Engineered dissipation for quantum information science, Nature Reviews Physics 4, 660 (2022).
  22. S. F. Huelga, A. Rivas, and M. B. Plenio, Non-markovianity-assisted steady state entanglement, Phys. Rev. Lett. 108, 160402 (2012).
  23. A. González-Tudela and D. Porras, Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics, Phys. Rev. Lett. 110, 080502 (2013).
  24. J. Johansson, P. Nation, and F. Nori, Qutip 2: A python framework for the dynamics of open quantum systems, Computer Physics Communications 184, 1234 (2013).
  25. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007).
  26. H. J. Carmichael, Statistical methods in quantum optics 1: master equations and Fokker-Planck equations (Springer Science & Business Media, 2013).
  27. T. Brandes, Chapter 7 (quantum dissipation), lectures on background to quantum information (2004).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com