Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hilbert Functions and Low-Degree Randomness Extractors (2405.10277v1)

Published 16 May 2024 in cs.CC

Abstract: For $S\subseteq \mathbb{F}n$, consider the linear space of restrictions of degree-$d$ polynomials to $S$. The Hilbert function of $S$, denoted $\mathrm{h}_S(d,\mathbb{F})$, is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets $S$ of arbitrary finite grids in $\mathbb{F}n$ with a fixed size $|S|$. We achieve this by proving that this value coincides with a combinatorial quantity, namely the smallest number of low Hamming weight points in a down-closed set of size $|S|$. Understanding the smallest values of Hilbert functions is closely related to the study of degree-$d$ closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A, 2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-$d$ closures of subsets of $\mathbb{F}_qn$, which answers a question posed by Doron, Ta-Shma, and Tell (Computational Complexity, 2022). We use the bounds on the Hilbert function and degree-$d$ closure of sets to prove that a random low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove the existence of low-degree extractors and dispersers for sources generated by constant-degree polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic extractors for such sources was not known.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Alexander Golovnev (33 papers)
  2. Zeyu Guo (21 papers)
  3. Pooya Hatami (27 papers)
  4. Satyajeet Nagargoje (2 papers)
  5. Chao Yan (65 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.