Searching for the QCD critical endpoint using multi-point Padé approximations (2405.10196v1)
Abstract: Using the multi-point Pad\'e approach, we locate Lee-Yang edge singularities of the QCD pressure in the complex baryon chemical potential plane. These singularities are extracted from singularities in the net baryon-number density calculated in $N_f=2+1$ lattice QCD at physical quark mass and purely imaginary chemical potential. Taking an appropriate scaling ansatz in the vicinity of the conjectured QCD critical endpoint, we extrapolate the singularities on $N_\tau=6$ lattices to pure real baryon chemical potential to estimate the position of the critical endpoint (CEP). We find $T{\rm CEP}=105{+8}_{-18}$~ MeV and $\mu_B{\rm CEP} = 422{+80}_{-35}$~ MeV, which compares well with recent estimates in the literature. For the slope of the transition line at the critical point we find $-0.16(24)$.
- Z. Fodor and S. Katz, A new method to study lattice QCD at finite temperature and chemical potential, Physics Letters B 534, 87 (2002).
- P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642, 290 (2002), arXiv:hep-lat/0205016 .
- M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67, 014505 (2003), arXiv:hep-lat/0209146 .
- R. V. Gavai and S. Gupta, Pressure and nonlinear susceptibilities in QCD at finite chemical potentials, Phys. Rev. D 68, 034506 (2003), arXiv:hep-lat/0303013 .
- S. Mondal, S. Mukherjee, and P. Hegde, Lattice QCD Equation of State for Nonvanishing Chemical Potential by Resumming Taylor Expansions, Phys. Rev. Lett. 128, 022001 (2022), arXiv:2106.03165 [hep-lat] .
- S. Mitra, P. Hegde, and C. Schmidt, New way to resum the lattice QCD Taylor series equation of state at finite chemical potential, Phys. Rev. D 106, 034504 (2022), arXiv:2205.08517 [hep-lat] .
- J. Adam et al. (STAR), Nonmonotonic Energy Dependence of Net-Proton Number Fluctuations, Phys. Rev. Lett. 126, 092301 (2021), arXiv:2001.02852 [nucl-ex] .
- J. Goswami (HotQCD), The isentropic equation of state of (2+1)-flavor QCD: An update based on high precision Taylor expansion and Pade-resummed expansion at finite chemical potentials, PoS LATTICE2022, 149 (2023), arXiv:2212.10016 [hep-lat] .
- C.-N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. 1. Theory of condensation, Phys. Rev. 87, 404 (1952).
- M. E. Fisher, Yang-Lee Edge Singularity and ϕ3superscriptitalic-ϕ3\phi^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Field Theory, Phys. Rev. Lett. 40, 1610 (1978).
- H. T. Ding et al. (HotQCD), Chiral Phase Transition Temperature in ( 2+1 )-Flavor QCD, Phys. Rev. Lett. 123, 062002 (2019), arXiv:1903.04801 [hep-lat] .
- L. Mazur et al. (HotQCD), SIMULATeQCD: A simple multi-GPU lattice code for QCD calculations, Comput. Phys. Commun. 300, 109164 (2024), arXiv:2306.01098 [hep-lat] .
- M. A. Clark and A. D. Kennedy, Accelerating dynamical fermion computations using the rational hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98, 051601 (2007), arXiv:hep-lat/0608015 .
- A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85, 054503 (2012), arXiv:1111.1710 [hep-lat] .
- A. Bazavov et al. (HotQCD), Equation of state in ( 2+1 )-flavor QCD, Phys. Rev. D 90, 094503 (2014), arXiv:1407.6387 [hep-lat] .
- J. J. Rehr and N. D. Mermin, Revised Scaling Equation of State at the Liquid-Vapor Critical Point, Phys. Rev. A 8, 472 (1973).
- C. Nonaka and M. Asakawa, Hydrodynamical evolution near the QCD critical end point, Phys. Rev. C 71, 044904 (2005), arXiv:nucl-th/0410078 .
- F. Rennecke and V. V. Skokov, Universal location of Yang–Lee edge singularity for a one-component field theory in 1≤\leq≤d≤\leq≤4, Annals Phys. 444, 169010 (2022), arXiv:2203.16651 [hep-ph] .
- G. Johnson, F. Rennecke, and V. V. Skokov, Universal location of Yang-Lee edge singularity in classic O(N) universality classes, Phys. Rev. D 107, 116013 (2023), arXiv:2211.00710 [hep-ph] .
- F. Karsch, C. Schmidt, and S. Singh, Lee-Yang and Langer edge singularities from analytic continuation of scaling functions, Phys. Rev. D 109, 014508 (2024), arXiv:2311.13530 [hep-lat] .
- M. A. Stephanov, QCD critical point and complex chemical potential singularities, Phys. Rev. D 73, 094508 (2006), arXiv:hep-lat/0603014 .
- A. Bazavov et al. (HotQCD), Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795, 15 (2019), arXiv:1812.08235 [hep-lat] .
- W.-j. Fu, J. M. Pawlowski, and F. Rennecke, QCD phase structure at finite temperature and density, Phys. Rev. D 101, 054032 (2020), arXiv:1909.02991 [hep-ph] .
- F. Gao and J. M. Pawlowski, Chiral phase structure and critical end point in QCD, Phys. Lett. B 820, 136584 (2021), arXiv:2010.13705 [hep-ph] .
- M. Giordano and A. Pásztor, Reliable estimation of the radius of convergence in finite density QCD, Phys. Rev. D 99, 114510 (2019), arXiv:1904.01974 [hep-lat] .
- S. Mukherjee and V. Skokov, Universality driven analytic structure of the QCD crossover: radius of convergence in the baryon chemical potential, Phys. Rev. D 103, L071501 (2021), arXiv:1909.04639 [hep-ph] .
- F. Karsch, Critical behavior and net-charge fluctuations from lattice QCD, PoS CORFU2018, 163 (2019), arXiv:1905.03936 [hep-lat] .
- P. J. Gunkel and C. S. Fischer, Locating the critical endpoint of QCD: Mesonic backcoupling effects, Phys. Rev. D 104, 054022 (2021), arXiv:2106.08356 [hep-ph] .
- M. Hippert et al., Bayesian location of the QCD critical point from a holographic perspective, 2309.00579 (2023).
- G. Basar, On the QCD critical point, Lee-Yang edge singularities and Pade resummations, 2312.06952 (2023).
- Jülich Supercomputing Centre, JUWELS Cluster and Booster: Exascale Pathfinder with Modular Supercomputing Architecture at Juelich Supercomputing Centre, Journal of large-scale research facilities 7, 10.17815/jlsrf-7-183 (2021).