Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Recursive Lower Bound on the Energy Improvement of the Quantum Approximate Optimization Algorithm (2405.10125v2)

Published 16 May 2024 in quant-ph

Abstract: The Quantum Approximate Optimization Algorithm (QAOA) uses a quantum computer to implement a variational method with $2p$ layers of alternating unitary operators, optimized by a classical computer to minimize a cost function. While rigorous performance guarantees exist for the QAOA at small depths $p$, the behavior at large depths remains less clear, though simulations suggest exponentially fast convergence for certain problems. In this work, we gain insights into the deep QAOA using an analytic expansion of the cost function around transition states. Transition states are constructed recursively: from a local minima of the QAOA with $p$ layers we obtain transition states of the QAOA with $p+1$ layers, which are stationary points characterized by a unique direction of negative curvature. We construct an analytic estimate of the negative curvature and the corresponding direction in parameter space at each transition state. Expansion of the QAOA cost function along the negative direction to the quartic order gives a lower bound of the QAOA cost function improvement. We provide physical intuition behind the analytic expressions for the local curvature and quartic expansion coefficient. Our numerical study confirms the accuracy of our approximations, and reveals that the obtained bound and the true value of the QAOA cost function gain have a characteristic exponential decrease with the number of layers $p$, with the bound decreasing more rapidly. Our study establishes an analytical method for recursively studying the QAOA applicable in the regime of high circuit depth.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. J. Preskill, Quantum Computing in the NISQ era and beyond, arXiv e-prints , arXiv:1801.00862 (2018), arXiv:1801.00862 [quant-ph] .
  2. E. Farhi, J. Goldstone, and S. Gutmann, A Quantum Approximate Optimization Algorithm, arXiv e-prints , arXiv:1411.4028 (2014), arXiv:1411.4028 [quant-ph] .
  3. E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem (2015), arXiv:1412.6062 [quant-ph] .
  4. E. Farhi, D. Gamarnik, and S. Gutmann, The Quantum Approximate Optimization Algorithm Needs to See the Whole Graph: A Typical Case, arXiv e-prints , arXiv:2004.09002 (2020), arXiv:2004.09002 [quant-ph] .
  5. S. Boulebnane and A. Montanaro, Predicting parameters for the quantum approximate optimization algorithm for max-cut from the infinite-size limit (2021), arXiv:2110.10685 [quant-ph] .
  6. S. Boulebnane and A. Montanaro, Solving boolean satisfiability problems with the quantum approximate optimization algorithm (2022), arXiv:2208.06909 [quant-ph] .
  7. J. Wurtz and P. Love, MaxCut quantum approximate optimization algorithm performance guarantees for p>1𝑝1p>1italic_p > 1, Phys. Rev. A 103, 042612 (2021), arXiv:2010.11209 [quant-ph] .
  8. L. Zhou, J. Basso, and S. Mei, Statistical estimation in the spiked tensor model via the quantum approximate optimization algorithm (2024), arXiv:2402.19456 [quant-ph] .
  9. J. Yao, M. Bukov, and L. Lin, Policy gradient based quantum approximate optimization algorithm (2020), arXiv:2002.01068 [quant-ph] .
  10. J. Wurtz, S. Sack, and S.-T. Wang, Solving non-native combinatorial optimization problems using hybrid quantum-classical algorithms (2024), arXiv:2403.03153 [quant-ph] .
  11. S. Ebadi et al., Quantum Optimization of Maximum Independent Set using Rydberg Atom Arrays, Science 376, 1209 (2022), arXiv:2202.09372 [quant-ph] .
  12. G. E. Crooks, Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem, arXiv e-prints , arXiv:1811.08419 (2018), arXiv:1811.08419 [quant-ph] .
  13. S. H. Sack and M. Serbyn, Quantum annealing initialization of the quantum approximate optimization algorithm, arXiv e-prints , arXiv:2101.05742 (2021), arXiv:2101.05742 [quant-ph] .
  14. C. G. Broyden, The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations, IMA Journal of Applied Mathematics 6, 76 (1970).
  15. R. Fletcher, A new approach to variable metric algorithms, The Computer Journal 13, 317 (1970).
  16. D. Goldfarb, A family of variable-metric methods derived by variational means, Mathematics of Computation 24, 23 (1970).
  17. D. F. Shanno, Conditioning of quasi-newton methods for function minimization, Mathematics of Computation 24, 647 (1970).
  18. R. A. Medina, QAOALandscapes.jl, https://github.com/RaimelMedina/QAOALandscapes/tree/main (2024).
  19. T. Besard, C. Foket, and B. De Sutter, Effective extensible programming: Unleashing Julia on GPUs, IEEE Transactions on Parallel and Distributed Systems 10.1109/TPDS.2018.2872064 (2018), arXiv:1712.03112 [cs.PL] .
  20. T. Besard and M. Hawkins, Metal.jl, available online at https://github.com/JuliaGPU/Metal.jl.
  21. P. K. Mogensen and A. N. Riseth, Optim: A mathematical optimization package for julia, Journal of Open Source Software 3, 615 (2018).
  22. T. Jones and J. Gacon, Efficient calculation of gradients in classical simulations of variational quantum algorithms (2020), arXiv:2009.02823 [quant-ph] .

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com