Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating (2405.10118v1)
Abstract: Imaging inside scattering media at optical resolution is a longstanding challenge affecting multiple fields, from bio-medicine to astronomy. In recent years, several groundbreaking techniques for imaging inside scattering media, in particular scattering-matrix based approaches, have shown great promise, but usually suffer from a restricted field of view (FOV) due to their reliance on the optical 'memory-effect'. Here, we demonstrate that by combining acousto-optic spatial-gating with state-of-the-art matrix-based imaging techniques, diffraction-limited imaging beyond the optical memory-effect can be achieved in a robust fashion. Specifically, we show that this can be achieved by computational processing of scattered light fields captured under scanned acousto-optic modulation. The approach can be directly utilized whenever the ultrasound focus size is of the order of the memory-effect range, independently of the scattering angle.
- J. Bertolotti and O. Katz, “Imaging in complex media,” Nature Physics 18, 1008–1017 (2022).
- J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
- O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nature photonics 8, 784–790 (2014).
- E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the fourier-domain shower-curtain effect,” Optica 3, 71–74 (2016).
- S. Kang, P. Kang, S. Jeong, Y. Kwon, T. D. Yang, J. H. Hong, M. Kim, K.-D. Song, J. H. Park, J. H. Lee, et al., “High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering,” Nature communications 8, 2157 (2017).
- H. Lee, S. Yoon, P. Loohuis, J. H. Hong, S. Kang, and W. Choi, “High-throughput volumetric adaptive optical imaging using compressed time-reversal matrix,” Light: Science & Applications 11, 16 (2022).
- U. Najar, V. Barolle, P. Balondrade, M. Fink, A. C. Boccara, and A. Aubry, “Non-invasive retrieval of the transmission matrix for optical imaging deep inside a multiple scattering medium,” arXiv preprint arXiv:2303.06119 (2023).
- O. Haim, J. Boger-Lombard, and O. Katz, “Image-guided computational holographic wavefront shaping,” arXiv preprint arXiv:2305.12232 (2023).
- Y. Zhang, M. Dinh, Z. Wang, T. Zhang, T. Chen, and C. W. Hsu, “Deep imaging inside scattering media through virtual spatiotemporal wavefront shaping,” arXiv preprint arXiv:2306.08793 (2023).
- Y. Kwon, J. H. Hong, S. Kang, H. Lee, Y. Jo, K. H. Kim, S. Yoon, and W. Choi, “Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin,” Nature Communications 14, 105 (2023).
- W. Choi, M. Kang, J. H. Hong, O. Katz, B. Lee, G. H. Kim, Y. Choi, and W. Choi, “Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues,” Nature communications 13, 4469 (2022).
- D. F. Gardner, S. Divitt, and A. T. Watnik, “Ptychographic imaging of incoherently illuminated extended objects using speckle correlations,” Applied optics 58, 3564–3569 (2019).
- G. Li, W. Yang, H. Wang, and G. Situ, “Image transmission through scattering media using ptychographic iterative engine,” Applied Sciences 9, 849 (2019).
- M. Zhou, R. Li, T. Peng, A. Pan, J. Min, C. Bai, D. Dan, and B. Yao, “Retrieval of non-sparse objects through scattering media beyond the memory effect,” Journal of Optics 22, 085606 (2020).
- H. Trussell and B. Hunt, “Sectioned methods for image restoration,” IEEE Transactions on Acoustics, Speech, and Signal Processing 26, 157–164 (1978).
- M. Alterman, C. Bar, I. Gkioulekas, and A. Levin, “Imaging with local speckle intensity correlations: theory and practice,” ACM Transactions on Graphics (TOG) 40, 1–22 (2021).
- P. Balondrade, V. Barolle, N. Guigui, E. Auriant, N. Rougier, C. Boccara, M. Fink, and A. Aubry, “Multi-spectral reflection matrix for ultra-fast 3d label-free microscopy,” arXiv preprint arXiv:2309.10951 (2023).
- A. Badon, V. Barolle, K. Irsch, A. C. Boccara, M. Fink, and A. Aubry, “Distortion matrix concept for deep optical imaging in scattering media,” Science Advances 6, eaay7170 (2020).
- S. Kang, Y. Kwon, H. Lee, S. Kim, J. H. Hong, S. Yoon, and W. Choi, “Tracing multiple scattering trajectories for deep optical imaging in scattering media,” Nature communications 14, 6871 (2023).
- L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Disease markers 19, 123–138 (2004).
- D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1, 632–648 (2011).
- S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” Journal of biomedical optics 17, 040901–040901 (2012).
- M. Jang, H. Ko, J. H. Hong, W. K. Lee, J.-S. Lee, and W. Choi, “Deep tissue space-gated microscopy via acousto-optic interaction,” Nature communications 11, 710 (2020).
- H. Ko, J. Kim, J. H. Hong, J. Cheon, S. Lee, M. Jang, and W. Choi, “Acousto-optic volumetric gating for reflection-mode deep optical imaging within a scattering medium,” ACS Photonics 10, 3664–3673 (2023).
- T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” Proceedings of the National Academy of Sciences 106, 22287–22292 (2009).
- D. Doktofsky, M. Rosenfeld, and O. Katz, “Acousto optic imaging beyond the acoustic diffraction limit using speckle decorrelation,” Communications physics 3, 5 (2020).
- K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Scientific reports 2, 748 (2012).
- H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Scientific reports 4, 7156 (2014).
- B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (trove),” Nature photonics 7, 300–305 (2013).
- O. Katz, F. Ramaz, S. Gigan, and M. Fink, “Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix,” Nature communications 10, 717 (2019).
- M. Rosenfeld, G. Weinberg, D. Doktofsky, Y. Li, L. Tian, and O. Katz, “Acousto-optic ptychography,” Optica 8, 936–943 (2021).
- M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Optics letters 30, 1357–1359 (2005).
- G. Weinberg, E. Sunray, and O. Katz, “Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual reflection-matrix,” arXiv preprint arXiv:2312.16065 (2023).
- C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Optics letters 30, 3350–3352 (2005).
- C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Optics express 14, 7198–7209 (2006).
- M. Kim, C. Park, C. Rodriguez, Y. Park, and Y.-H. Cho, “Superresolution imaging with optical fluctuation using speckle patterns illumination,” Scientific reports 5, 16525 (2015).
- S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Physical review letters 104, 100601 (2010).