Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating (2405.10118v1)

Published 16 May 2024 in physics.optics and physics.app-ph

Abstract: Imaging inside scattering media at optical resolution is a longstanding challenge affecting multiple fields, from bio-medicine to astronomy. In recent years, several groundbreaking techniques for imaging inside scattering media, in particular scattering-matrix based approaches, have shown great promise, but usually suffer from a restricted field of view (FOV) due to their reliance on the optical 'memory-effect'. Here, we demonstrate that by combining acousto-optic spatial-gating with state-of-the-art matrix-based imaging techniques, diffraction-limited imaging beyond the optical memory-effect can be achieved in a robust fashion. Specifically, we show that this can be achieved by computational processing of scattered light fields captured under scanned acousto-optic modulation. The approach can be directly utilized whenever the ultrasound focus size is of the order of the memory-effect range, independently of the scattering angle.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. J. Bertolotti and O. Katz, “Imaging in complex media,” Nature Physics 18, 1008–1017 (2022).
  2. J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos,  and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
  3. O. Katz, P. Heidmann, M. Fink,  and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nature photonics 8, 784–790 (2014).
  4. E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the fourier-domain shower-curtain effect,” Optica 3, 71–74 (2016).
  5. S. Kang, P. Kang, S. Jeong, Y. Kwon, T. D. Yang, J. H. Hong, M. Kim, K.-D. Song, J. H. Park, J. H. Lee, et al., “High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering,” Nature communications 8, 2157 (2017).
  6. H. Lee, S. Yoon, P. Loohuis, J. H. Hong, S. Kang,  and W. Choi, “High-throughput volumetric adaptive optical imaging using compressed time-reversal matrix,” Light: Science & Applications 11, 16 (2022).
  7. U. Najar, V. Barolle, P. Balondrade, M. Fink, A. C. Boccara,  and A. Aubry, “Non-invasive retrieval of the transmission matrix for optical imaging deep inside a multiple scattering medium,” arXiv preprint arXiv:2303.06119  (2023).
  8. O. Haim, J. Boger-Lombard,  and O. Katz, “Image-guided computational holographic wavefront shaping,” arXiv preprint arXiv:2305.12232  (2023).
  9. Y. Zhang, M. Dinh, Z. Wang, T. Zhang, T. Chen,  and C. W. Hsu, “Deep imaging inside scattering media through virtual spatiotemporal wavefront shaping,” arXiv preprint arXiv:2306.08793  (2023).
  10. Y. Kwon, J. H. Hong, S. Kang, H. Lee, Y. Jo, K. H. Kim, S. Yoon,  and W. Choi, “Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin,” Nature Communications 14, 105 (2023).
  11. W. Choi, M. Kang, J. H. Hong, O. Katz, B. Lee, G. H. Kim, Y. Choi,  and W. Choi, “Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues,” Nature communications 13, 4469 (2022).
  12. D. F. Gardner, S. Divitt,  and A. T. Watnik, “Ptychographic imaging of incoherently illuminated extended objects using speckle correlations,” Applied optics 58, 3564–3569 (2019).
  13. G. Li, W. Yang, H. Wang,  and G. Situ, “Image transmission through scattering media using ptychographic iterative engine,” Applied Sciences 9, 849 (2019).
  14. M. Zhou, R. Li, T. Peng, A. Pan, J. Min, C. Bai, D. Dan,  and B. Yao, “Retrieval of non-sparse objects through scattering media beyond the memory effect,” Journal of Optics 22, 085606 (2020).
  15. H. Trussell and B. Hunt, “Sectioned methods for image restoration,” IEEE Transactions on Acoustics, Speech, and Signal Processing 26, 157–164 (1978).
  16. M. Alterman, C. Bar, I. Gkioulekas,  and A. Levin, “Imaging with local speckle intensity correlations: theory and practice,” ACM Transactions on Graphics (TOG) 40, 1–22 (2021).
  17. P. Balondrade, V. Barolle, N. Guigui, E. Auriant, N. Rougier, C. Boccara, M. Fink,  and A. Aubry, “Multi-spectral reflection matrix for ultra-fast 3d label-free microscopy,” arXiv preprint arXiv:2309.10951  (2023).
  18. A. Badon, V. Barolle, K. Irsch, A. C. Boccara, M. Fink,  and A. Aubry, “Distortion matrix concept for deep optical imaging in scattering media,” Science Advances 6, eaay7170 (2020).
  19. S. Kang, Y. Kwon, H. Lee, S. Kim, J. H. Hong, S. Yoon,  and W. Choi, “Tracing multiple scattering trajectories for deep optical imaging in scattering media,” Nature communications 14, 6871 (2023).
  20. L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Disease markers 19, 123–138 (2004).
  21. D. S. Elson, R. Li, C. Dunsby, R. Eckersley,  and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1, 632–648 (2011).
  22. S. G. Resink, A. C. Boccara,  and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” Journal of biomedical optics 17, 040901–040901 (2012).
  23. M. Jang, H. Ko, J. H. Hong, W. K. Lee, J.-S. Lee,  and W. Choi, “Deep tissue space-gated microscopy via acousto-optic interaction,” Nature communications 11, 710 (2020).
  24. H. Ko, J. Kim, J. H. Hong, J. Cheon, S. Lee, M. Jang,  and W. Choi, “Acousto-optic volumetric gating for reflection-mode deep optical imaging within a scattering medium,” ACS Photonics 10, 3664–3673 (2023).
  25. T. Dertinger, R. Colyer, G. Iyer, S. Weiss,  and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” Proceedings of the National Academy of Sciences 106, 22287–22292 (2009).
  26. D. Doktofsky, M. Rosenfeld,  and O. Katz, “Acousto optic imaging beyond the acoustic diffraction limit using speckle decorrelation,” Communications physics 3, 5 (2020).
  27. K. Si, R. Fiolka,  and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Scientific reports 2, 748 (2012).
  28. H. Ruan, M. Jang, B. Judkewitz,  and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Scientific reports 4, 7156 (2014).
  29. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy,  and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (trove),” Nature photonics 7, 300–305 (2013).
  30. O. Katz, F. Ramaz, S. Gigan,  and M. Fink, “Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix,” Nature communications 10, 717 (2019).
  31. M. Rosenfeld, G. Weinberg, D. Doktofsky, Y. Li, L. Tian,  and O. Katz, “Acousto-optic ptychography,” Optica 8, 936–943 (2021).
  32. M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara,  and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Optics letters 30, 1357–1359 (2005).
  33. G. Weinberg, E. Sunray,  and O. Katz, “Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual reflection-matrix,” arXiv preprint arXiv:2312.16065  (2023).
  34. C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Optics letters 30, 3350–3352 (2005).
  35. C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Optics express 14, 7198–7209 (2006).
  36. M. Kim, C. Park, C. Rodriguez, Y. Park,  and Y.-H. Cho, “Superresolution imaging with optical fluctuation using speckle patterns illumination,” Scientific reports 5, 16525 (2015).
  37. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara,  and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Physical review letters 104, 100601 (2010).

Summary

We haven't generated a summary for this paper yet.