Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Machine Learning Approach for Simultaneous Demapping of QAM and APSK Constellations (2405.09909v1)

Published 16 May 2024 in cs.LG, cs.AI, cs.IT, and math.IT

Abstract: As telecommunication systems evolve to meet increasing demands, integrating deep neural networks (DNNs) has shown promise in enhancing performance. However, the trade-off between accuracy and flexibility remains challenging when replacing traditional receivers with DNNs. This paper introduces a novel probabilistic framework that allows a single DNN demapper to demap multiple QAM and APSK constellations simultaneously. We also demonstrate that our framework allows exploiting hierarchical relationships in families of constellations. The consequence is that we need fewer neural network outputs to encode the same function without an increase in Bit Error Rate (BER). Our simulation results confirm that our approach approaches the optimal demodulation error bound under an Additive White Gaussian Noise (AWGN) channel for multiple constellations. Thereby, we address multiple important issues in making DNNs flexible enough for practical use as receivers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and Wireless Networking: A Survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.
  2. B. Ozpoyraz, A. T. Dogukan, Y. Gevez, U. Altun, and E. Basar, “Deep learning-aided 6g wireless networks: A comprehensive survey of revolutionary phy architectures,” IEEE Open Journal of the Communications Society, vol. 3, pp. 1749–1809, 2022.
  3. X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang et al., “Towards 6g wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Science China Information Sciences, vol. 64, pp. 1–74, 2021.
  4. T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563–575, 2017.
  5. S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep Learning-Based Communication Over the Air,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 132–143, Feb. 2018.
  6. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.
  7. M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep Learning-Based Channel Estimation,” IEEE Communications Letters, vol. 23, no. 4, pp. 652–655, Apr. 2019.
  8. E. Balevi, A. Doshi, and J. G. Andrews, “Massive mimo channel estimation with an untrained deep neural network,” IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 2079–2090, 2020.
  9. Y. Wang, H. Lu, and H. Sun, “Channel estimation in irs-enhanced mmwave system with super-resolution network,” IEEE Communications Letters, vol. 25, no. 8, pp. 2599–2603, 2021.
  10. M. Honkala, D. Korpi, and J. M. J. Huttunen, “DeepRx: Fully Convolutional Deep Learning Receiver,” IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp. 3925–3940, Jun. 2021.
  11. Z. Zhao, M. C. Vuran, F. Guo, and S. D. Scott, “Deep-waveform: A learned ofdm receiver based on deep complex-valued convolutional networks,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 8, pp. 2407–2420, 2021.
  12. D. Korpi, M. Honkala, J. M. Huttunen, and V. Starck, “Deeprx mimo: Convolutional mimo detection with learned multiplicative transformations,” in ICC 2021 - IEEE International Conference on Communications, 2021, pp. 1–7.
  13. T. Raviv, S. Park, O. Simeone, Y. C. Eldar, and N. Shlezinger, “Online meta-learning for hybrid model-based deep receivers,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  14. T. Raviv and N. Shlezinger, “Data augmentation for deep receivers,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  15. A. Morello and V. Mignone, “Dvb-s2: The second generation standard for satellite broad-band services,” Proceedings of the IEEE, vol. 94, no. 1, pp. 210–227, 2006.
  16. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.
  17. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Conference on Learning Representations (ICLR), 2017.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com