Holevo Cramér-Rao bound: How close can we get without entangling measurements? (2405.09622v1)
Abstract: In multi-parameter quantum metrology, the resource of entanglement can lead to an increase in efficiency of the estimation process. Entanglement can be used in the state preparation stage, or the measurement stage, or both, to harness this advantage; here we focus on the role of entangling measurements. Specifically, entangling or collective measurements over multiple identical copies of a probe state are known to be superior to measuring each probe individually, but the extent of this improvement is an open problem. It is also known that such entangling measurements, though resource-intensive, are required to attain the ultimate limits in multi-parameter quantum metrology and quantum information processing tasks. In this work we investigate the maximum precision improvement that collective quantum measurements can offer over individual measurements for estimating parameters of qudit states, calling this the 'collective quantum enhancement'. We show that, whereas the maximum enhancement can, in principle, be a factor of $n$ for estimating $n$ parameters, this bound is not tight for large $n$. Instead, our results prove an enhancement linear in dimension of the qudit is possible using collective measurements and lead us to conjecture that this is the maximum collective quantum enhancement in any local estimation scenario.
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
- V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nat. Photonics 5, 222–229 (2011).
- M. Szczykulska, T. Baumgratz, and A. Datta, Multi-parameter quantum metrology, Adv. Phys.: X 1, 621–639 (2016).
- C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23, 1693 (1981).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced positioning and clock synchronization, Nature 412, 417–419 (2001).
- M. Tsang, R. Nair, and X.-M. Lu, Quantum theory of superresolution for two incoherent optical point sources, Phys. Rev. X 6, 031033 (2016).
- M. Paris and J. Rehacek, Quantum State Estimation, Lect. Notes Phys. (Springer Berlin Heidelberg, 2004).
- M. Hayashi, Asymptotic Theory of Quantum Statistical Inference: Selected Papers (World Scientific, 2005).
- M. G. A. Paris, Quantum estimation for quantum technology, Int. J. Quantum Inf. 07, 125–137 (2009).
- H. Yuen and M. Lax, Multiple-parameter quantum estimation and measurement of nonselfadjoint observables, IEEE Trans. Inf. Theory 19, 740 (1973).
- C. Helstrom and R. Kennedy, Noncommuting observables in quantum detection and estimation theory, IEEE Trans. Inf. Theory 20, 16–24 (1974).
- M. Hayashi, On simultaneous measurement of noncommutative physical values, in Development of infinite-dimensional noncommutative analysis, 1099 (RIMS Kokyuroku, Kyoto Univ., 1999) pp. 96–188.
- C. W. Helstrom, Quantum detection and estimation theory, J. Stat. Phys. 1, 231–252 (1969).
- S. Massar and S. Popescu, Optimal extraction of information from finite quantum ensembles, Phys. Rev. Lett. 74, 1259 (1995).
- R. D. Gill and S. Massar, State estimation for large ensembles, Phys. Rev. A 61, 042312 (2000).
- M. A. Ballester, Estimation of unitary quantum operations, Phys. Rev. A 69, 022303 (2004).
- K. Matsumoto, A new approach to the Cramér-Rao-type bound of the pure-state model, J. Phys. A 35, 3111–3123 (2002).
- C. Helstrom, Minimum mean-squared error of estimates in quantum statistics, Phys. Lett. A 25, 101–102 (1967).
- C. Helstrom, The minimum variance of estimates in quantum signal detection, IEEE Trans. Inf. Theory 14, 234 (1968).
- A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (Springer, 2011).
- H. Nagaoka, A new approach to Cramér-Rao bounds for quantum state estimation, in Asymptotic Theory of Quantum Statistical Inference (World Scientific, 2005) p. 100–112.
- H. Nagaoka, A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to quantum estimation theory, in Asymptotic Theory of Quantum Statistical Inference (World Scientific, 2005) p. 133–149.
- J. Kahn and M. Guţă, Local asymptotic normality for finite dimensional quantum systems, Commun. Math. Phys. 289, 597–652 (2009).
- K. Yamagata, A. Fujiwara, and R. D. Gill, Quantum local asymptotic normality based on a new quantum likelihood ratio, Ann. Stat. 41, 2197 (2013).
- Y. Yang, G. Chiribella, and M. Hayashi, Attaining the ultimate precision limit in quantum state estimation, Commun. Math. Phys. 368, 223–293 (2019).
- M. Gell-Mann, Symmetries of Baryons and Mesons, Phys. Rev. 125, 1067 (1962).
- Y. Watanabe, T. Sagawa, and M. Ueda, Uncertainty relation revisited from quantum estimation theory, Phys. Rev. A 84, 042121 (2011).
- J. Suzuki, Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem, J. Math. Phys. 57, 042201 (2016).
- F. Albarelli, J. F. Friel, and A. Datta, Evaluating the Holevo Cramér-Rao bound for multiparameter quantum metrology, Phys. Rev. Lett. 123, 200503 (2019).
- M. Tsang, The Holevo Cramér-Rao bound is at most thrice the Helstrom version 10.48550/arxiv.1911.08359 (2019).
- L. O. Conlon, P. K. Lam, and S. M. Assad, Multiparameter estimation with two-qubit probes in noisy channels, Entropy 25, 1122 (2023c).
- M. Hayashi and Y. Ouyang, Tight Cramér-Rao type bounds for multiparameter quantum metrology through conic programming, Quantum 7, 1094 (2023).
- R. A. Bertlmann and P. Krammer, Bloch vectors for qudits, J. Phys. A 41, 235303 (2008).
- J. Suzuki, Information geometrical characterization of quantum statistical models in quantum estimation theory, Entropy 21, 10.3390/e21070703 (2019).
- A. Fujiwara and H. Nagaoka, An estimation theoretical characterization of coherent states, J. Math. Phys. 40, 4227–4239 (1999).
- G. M. D’Ariano, L. Maccone, and M. G. A. Paris, Quorum of observables for universal quantum estimation, J. Phys. A 34, 93–103 (2000).
- G. M. D Ariano, P. Perinotti, and M. F. Sacchi, Informationally complete measurements and group representation, J. Opt. B: Quantum Semiclass. Opt. 6, S487–S491 (2004).
- D. R. Cox and N. Reid, Parameter orthogonality and approximate conditional inference, J. R. Stat. Soc., B 49, 1 (1987).
- A. Candeloro, Z. Pazhotan, and M. G. A. Paris, Dimension matters: precision and incompatibility in multi-parameter quantum estimation models 10.48550/arxiv.2403.07106 (2024).
- H. E. Haber, Useful relations among the generators in the defining and adjoint representations of SU(N), SciPost Phys. Lect. Notes , 21 (2021).
- A. E. Rastegin, Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies, Eur. Phys. J. D 67, 269 (2013).
- G. Tóth and I. Apellaniz, Quantum metrology from a quantum information science perspective, J. Phys. A 47, 424006 (2014).