Computable entanglement cost under positive partial transpose operations (2405.09613v2)
Abstract: Quantum information theory is plagued by the problem of regularisations, which require the evaluation of formidable asymptotic quantities. This makes it computationally intractable to gain a precise quantitative understanding of the ultimate efficiency of key operational tasks such as entanglement manipulation. Here we consider the problem of computing the asymptotic entanglement cost of preparing noisy quantum states under quantum operations with positive partial transpose (PPT). By means of an analytical example, a previously claimed solution to this problem is shown to be incorrect. Building on a previous characterisation of the PPT entanglement cost in terms of a regularised formula, we construct instead a hierarchy of semi-definite programs that bypasses the issue of regularisation altogether, and converges to the true asymptotic value of the entanglement cost. Our main result establishes that this convergence happens exponentially fast, thus yielding an efficient algorithm that approximates the cost up to an additive error $\varepsilon$ in time $\mathrm{poly}(D,\,\log(1/\varepsilon))$, where $D$ is the underlying Hilbert space dimension. To our knowledge, this is the first time that an asymptotic entanglement measure is shown to be efficiently computable despite no closed-form formula being available.
- A. S. Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory 44, 269 (1998).
- B. Schumacher and M. D. Westmoreland, Sending classical information via noisy quantum channels, Phys. Rev. A 56, 131 (1997).
- S. Lloyd, Capacity of the noisy quantum channel, Phys. Rev. A 55, 1613 (1997).
- P. Shor, The quantum channel capacity and coherent information, Lecture notes, MSRI Workshop on Quantum Computation (2002).
- I. Devetak, The private classical capacity and quantum capacity of a quantum channel, IEEE Trans. Inf. Theory 51, 44 (2005).
- I. Devetak and A. Winter, Distillation of secret key and entanglement from quantum states, Proc. Royal Soc. A 461, 207 (2005).
- L. Lami and B. Regula, Distillable entanglement under dually non-entangling operations, Preprint arXiv:2307.11008 (2023a).
- K. G. H. Vollbrecht and R. F. Werner, Entanglement measures under symmetry, Phys. Rev. A 64, 062307 (2001).
- P. W. Shor, Equivalence of additivity questions in quantum information theory, Commun. Math. Phys. 246, 473 (2004).
- P. Hayden and A. Winter, Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1, Commun. Math. Phys. 284, 263 (2008).
- M. B. Hastings, Superadditivity of communication capacity using entangled inputs, Nat. Phys. 5, 255 (2009).
- G. Smith and J. Yard, Quantum communication with zero-capacity channels, Science 321, 1812 (2008).
- W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80, 2245 (1998).
- X. Wang and M. M. Wilde, Cost of quantum entanglement simplified, Phys. Rev. Lett. 125, 040502 (2020).
- X. Wang and M. M. Wilde, Exact entanglement cost of quantum states and channels under positive-partial-transpose-preserving operations, Phys. Rev. A 107, 012429 (2023).
- G. Gour and C. M. Scandolo, Dynamical entanglement, Phys. Rev. Lett. 125, 180505 (2020).
- G. Gour and C. M. Scandolo, Entanglement of a bipartite channel, Phys. Rev. A 103, 062422 (2021).
- S. Ishizaka, Binegativity and geometry of entangled states in two qubits, Phys. Rev. A 69, 020301 (2004).
- A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413 (1996).
- G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
- M. B. Plenio, Logarithmic negativity: A full entanglement monotone that is not convex, Phys. Rev. Lett. 95, 090503 (2005).
- J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
- P. Skrzypczyk and D. Cavalcanti, Semidefinite Programming in Quantum Information Science (IOP Publishing, 2023).
- L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev. 38, 49 (1996).
- X. Wang and M. M. Wilde, Errata for “Cost of quantum entanglement simplified” and “Exact entanglement cost of quantum states and channels under PPT-preserving operations”, preprint https://doi.org/10.5281/zenodo.11061607 (2024).
- See the Supplemental Material.
- H. Fawzi and O. Fawzi, Defining quantum divergences via convex optimization, Quantum 5, 387 (2021).
- K. Fang and H. Fawzi, Geometric Rényi divergence and its applications in quantum channel capacities, Commun. Math. Phys. 384, 1615 (2021).
- E. M. Rains, Bound on distillable entanglement, Phys. Rev. A 60, 179 (1999).
- E. M. Rains, A semidefinite program for distillable entanglement, IEEE Trans. Inf. Theory 47, 2921 (2001).
- X. Wang and R. Duan, Irreversibility of asymptotic entanglement manipulation under quantum operations completely preserving positivity of partial transpose, Phys. Rev. Lett. 119, 180506 (2017).
- R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989).
- M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998).
- D. Bruß and A. Peres, Construction of quantum states with bound entanglement, Phys. Rev. A 61, 030301 (2000).
- M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17, 228 (1923).
- M. A. Nielsen, Conditions for a class of entanglement transformations, Phys. Rev. Lett. 83, 436 (1999).
- S. Khatri and M. M. Wilde, Principles of quantum communication theory: A modern approach, preprint arXiv:2011.04672 (2020).
- M. Horodecki, Entanglement measures, Quantum Inf. Comput. 1, 3 (2001).
- L. Lami and B. Regula, No second law of entanglement manipulation after all, Nat. Phys. 19, 184 (2023b).
- G. Vidal and R. Tarrach, Robustness of entanglement, Phys. Rev. A 59, 141 (1999).
- C. Shannon, The zero error capacity of a noisy channel, IRE Trans. Inf. Theory 2, 8 (1956).