Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Learning of Dynamic Planar Manipulation of Free-End Cables (2405.09581v2)

Published 15 May 2024 in cs.RO

Abstract: Dynamic manipulation of free-end cables has applications for cable management in homes, warehouses and manufacturing plants. We present a supervised learning approach for dynamic manipulation of free-end cables, focusing on the problem of getting the cable endpoint to a designated target position, which may lie outside the reachable workspace of the robot end effector. We present a simulator, tune it to closely match experiments with physical cables, and then collect training data for learning dynamic cable manipulation. We evaluate with 3 cables and a physical UR5 robot. Results over 32x5 trials on 3 cables suggest that a physical UR5 robot can attain a median error distance ranging from 22% to 35% of the cable length among cables, outperforming an analytic baseline by 21% and a Gaussian Process baseline by 7% with lower interquartile range (IQR).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight Experience Replay,” in Neural Information Processing Systems (NeurIPS), 2017.
  2. Y. Avigal, S. Paradis, and H. Zhang, “6-dof grasp planning using fast 3d reconstruction and grasp quality cnn,” arXiv preprint arXiv:2009.08618, 2020.
  3. Y. Avigal, V. Satish, Z. Tam, H. Huang, H. Zhang, M. Danielczuk, J. Ichnowski, and K. Goldberg, “Avplug: Approach vector planning for unicontact grasping amid clutter,” in 2021 IEEE 17th international conference on automation science and engineering (CASE).   IEEE, 2021, pp. 1140–1147.
  4. J. Collins, R. Brown, J. Leitner, and D. Howard, “Traversing the Reality Gap via Simulator Tuning,” arXiv preprint arXiv:2003.01369, 2020.
  5. E. Coumans and Y. Bai, “PyBullet, a Python Module for Physics Simulation for Games, Robotics and Machine Learning,” http://pybullet.org, 2016–2020.
  6. S. Devgon, J. Ichnowski, A. Balakrishna, H. Zhang, and K. Goldberg, “Orienting novel 3d objects using self-supervised learning of rotation transforms,” in 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE).   IEEE, 2020, pp. 1453–1460.
  7. B. Eisner, H. Zhang, and D. Held, “Flowbot3d: Learning 3d articulation flow to manipulate articulated objects,” arXiv preprint arXiv:2205.04382, 2022.
  8. A. Elmquist, A. Young, T. Hansen, S. Ashokkumar, S. Caldararu, A. Dashora, I. Mahajan, H. Zhang, L. Fang, H. Shen et al., “Art/atk: A research platform for assessing and mitigating the sim-to-real gap in robotics and autonomous vehicle engineering,” arXiv preprint arXiv:2211.04886, 2022.
  9. C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,” in International Conference on Machine Learning (ICML), 2017.
  10. C. Gatti-Bonoa and N. Perkins, “Numerical Model for the Dynamics of a Coupled Fly Line / Fly Rod System and Experimental Validation,” Journal of Sound and Vibration, 2004.
  11. J. Grannen, P. Sundaresan, B. Thananjeyan, J. Ichnowski, A. Balakrishna, M. Hwang, V. Viswanath, M. Laskey, J. E. Gonzalez, and K. Goldberg, “Untangling Dense Knots by Learning Task-Relevant Keypoints,” in Conference on Robot Learning (CoRL), 2020.
  12. J. Hopcroft, J. Kearney, and D. Krafft, “A Case Study of Flexible Object Manipulation,” in International Journal of Robotics Research (IJRR), 1991.
  13. J. Ichnowski, Y. Avigal, V. Satish, and K. Goldberg, “Deep learning can accelerate grasp-optimized motion planning,” Science Robotics, vol. 5, no. 48, 2020.
  14. D. Jin, S. Karmalkar, H. Zhang, and L. Carlone, “Multi-model 3d registration: Finding multiple moving objects in cluttered point clouds,” arXiv preprint arXiv:2402.10865, 2024.
  15. Y.-H. Kim and D. A. Shell, “Using a Compliant, Unactuated Tail to Manipulate Objects,” in IEEE Robotics and Automation Letters (RA-L), 2016.
  16. S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,” in International Journal of Robotics Research (IJRR), 2001.
  17. V. Lim, H. Huang, L. Y. Chen, J. Wang, J. Ichnowski, D. Seita, M. Laskey, and K. Goldberg, “Planar robot casting with real2sim2real self-supervised learning,” arXiv preprint arXiv:2111.04814, 2021.
  18. ——, “Real2sim2real: Self-supervised learning of physical single-step dynamic actions for planar robot casting,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 8282–8289.
  19. X. Lin, Y. Wang, J. Olkin, and D. Held, “SoftGym: Benchmarking Deep Reinforcement Learning for Deformable Object Manipulation,” in Conference on Robot Learning (CoRL), 2020.
  20. W. H. Lui and A. Saxena, “Tangled: Learning to Untangle Ropes with RGB-D Perception,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013.
  21. H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll, and J. Schmidhuber, “A System for Robotic Heart Surgery that Learns to Tie Knots Using Recurrent Neural Networks,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006.
  22. T. Morita, J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi, “Knot Planning from Observation,” in IEEE International Conference on Robotics and Automation (ICRA), 2003.
  23. A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine, “Combining Self-Supervised Learning and Imitation for Vision-Based Rope Manipulation,” in IEEE International Conference on Robotics and Automation (ICRA), 2017.
  24. H. Nakagaki, K. Kitagi, T. Ogasawara, and H. Tsukune, “Study of Deformation and Insertion Tasks of Flexible Wire,” in IEEE International Conference on Robotics and Automation (ICRA), 1997.
  25. C. Pan, B. Okorn, H. Zhang, B. Eisner, and D. Held, “Tax-pose: Task-specific cross-pose estimation for robot manipulation,” arXiv preprint arXiv:2211.09325, 2022.
  26. ——, “Tax-pose: Task-specific cross-pose estimation for robot manipulation,” in Conference on Robot Learning.   PMLR, 2023, pp. 1783–1792.
  27. D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik, A. A. Efros, and T. Darrell, “Zero-Shot Visual Imitation,” in International Conference on Learning Representations (ICLR), 2018.
  28. X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-Real Transfer of Robotic Control with Dynamics Randomization,” in IEEE International Conference on Robotics and Automation (ICRA), 2018.
  29. J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic Manipulation and Sensing of Deformable Objects in Domestic and Industrial Applications: a Survey,” in International Journal of Robotics Research (IJRR), 2018.
  30. D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Goldberg, and A. Zeng, “Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks,” in IEEE International Conference on Robotics and Automation (ICRA), 2021.
  31. S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, and K. Goldberg, “Automating Multi-Throw Multilateral Surgical Suturing with a Mechanical Needle Guide and Sequential Convex Optimization,” in IEEE International Conference on Robotics and Automation (ICRA), 2016.
  32. Y. She, S. Dong, S. Wang, N. Sunil, A. Rodriguez, and E. Adelson, “Cable Manipulation with a Tactile-Reactive Gripper,” in Robotics: Science and Systems (RSS), 2020.
  33. S. Shen, Z. Zhu, L. Fan, H. Zhang, and X. Wu, “Diffclip: Leveraging stable diffusion for language grounded 3d classification,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 3596–3605.
  34. K. C. Sim, F. Beaufays, A. Benard, D. Guliani, A. Kabel, N. Khare, T. Lucassen, P. Zadrazil, H. Zhang, L. Johnson et al., “Personalization of end-to-end speech recognition on mobile devices for named entities,” in 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU).   IEEE, 2019, pp. 23–30.
  35. S. Teng, H. Zhang, D. Jin, A. Jasour, M. Ghaffari, and L. Carlone, “Gmkf: Generalized moment kalman filter for polynomial systems with arbitrary noise,” arXiv preprint arXiv:2403.04712, 2024.
  36. J. van den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan, X.-Y. Fu, K. Goldberg, and P. Abbeel, “Superhuman Performance of Surgical Tasks by Robots Using Iterative Learning from Human-Guided Demonstrations,” in IEEE International Conference on Robotics and Automation (ICRA), 2010.
  37. F. von Drigalski, D. Joshi, T. Murooka, K. Tanaka, M. Hamaya, and Y. Ijiri, “An Analytical Diabolo Model for Robotic Learning and Control,” arXiv preprint arXiv:2011.09068, 2020.
  38. C. Wang, S. Wang, B. Romero, F. Veiga, and E. Adelson, “SwingBot: Learning Physical Features from In-hand Tactile Exploration for Dynamic Swing-up Manipulation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.
  39. G. Wang and N. Wereley, “Analysis of Fly Fishing Rod Casting Dynamics,” Shock and Vibration, vol. 18, no. 6, pp. 839–855, 2011.
  40. W. Wang and D. Balkcom, “Tying Knot Precisely,” in IEEE International Conference on Robotics and Automation (ICRA), 2016.
  41. W. Wang, D. Berenson, and D. Balkcom, “An Online Method for Tight-Tolerance Insertion Tasks for String and Rope,” in IEEE International Conference on Robotics and Automation (ICRA), 2015.
  42. Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel, “Learning to Manipulate Deformable Objects without Demonstrations,” in Robotics: Science and Systems (RSS), 2020.
  43. Y. Yamakawa, A. Namiki, and M. Ishikawa, “Motion Planning for Dynamic Knotting of a Flexible Rope With a High-Speed Robot Arm,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010.
  44. ——, “Simple Model and Deformation Control of a Flexible Rope Using Constant, High-speed Motion of a Robot Arm,” in IEEE International Conference on Robotics and Automation (ICRA), 2012.
  45. ——, “Dynamic High-Speed Knotting of a Rope by a Manipulator,” in International Journal of Advanced Robotic Systems, 2013.
  46. Y. Yamakawa, A. Namiki, M. Ishikawa, and M. Shimojo, “One-Handed Knotting of a Flexible Rope With a High-Speed Multifingered Hand Having Tactile Sensors,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2007.
  47. W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning Predictive Representations for Deformable Objects Using Contrastive Estimation,” in Conference on Robot Learning (CoRL), 2020.
  48. Y. Yao, S. Deng, Z. Cao, H. Zhang, and L.-J. Deng, “Apla: Additional perturbation for latent noise with adversarial training enables consistency,” arXiv preprint arXiv:2308.12605, 2023.
  49. A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, and J. Lee, “Transporter Networks: Rearranging the Visual World for Robotic Manipulation,” in Conference on Robot Learning (CoRL), 2020.
  50. A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “TossingBot: Learning to Throw Arbitrary Objects with Residual Physics,” in Robotics: Science and Systems (RSS), 2019.
  51. H. Zhang, “Health diagnosis based on analysis of data captured by wearable technology devices,” International Journal of Advanced Science and Technology, vol. 95, pp. 89–96, 2016.
  52. H. Zhang, B. Eisner, and D. Held, “Flowbot++: Learning generalized articulated objects manipulation via articulation projection,” arXiv preprint arXiv:2306.12893, 2023.
  53. H. Zhang, J. Ichnowski, D. Seita, J. Wang, and K. Goldberg, “Robots of the Lost Arc: Learning to Dynamically Manipulate Fixed-Endpoint Ropes and Cables,” in IEEE International Conference on Robotics and Automation (ICRA), 2021.
  54. H. Zhang, J. Ichnowski, Y. Avigal, J. Gonzales, I. Stoica, and K. Goldberg, “Dex-net ar: Distributed deep grasp planning using a commodity cellphone and augmented reality app,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 552–558.
  55. H. Zhang, J. Ichnowski, D. Seita, J. Wang, H. Huang, and K. Goldberg, “Robots of the lost arc: Self-supervised learning to dynamically manipulate fixed-endpoint cables,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 4560–4567.
  56. J. Zhu, B. Navarro, R. Passama, P. Fraisse, A. Crosnier, and A. Cherubini, “Robotic Manipulation Planning for Shaping Deformable Linear Objects with Environmental Contacts,” in IEEE Robotics and Automation Letters (RA-L), 2019.
  57. S. Zimmermann, R. Poranne, and S. Coros, “Dynamic Manipulation of Deformable Objects with Implicit Integration,” in IEEE Robotics and Automation Letters (RA-L), 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com