Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KID-PPG: Knowledge Informed Deep Learning for Extracting Heart Rate from a Smartwatch (2405.09559v2)

Published 2 May 2024 in eess.SP and cs.LG

Abstract: Accurate extraction of heart rate from photoplethysmography (PPG) signals remains challenging due to motion artifacts and signal degradation. Although deep learning methods trained as a data-driven inference problem offer promising solutions, they often underutilize existing knowledge from the medical and signal processing community. In this paper, we address three shortcomings of deep learning models: motion artifact removal, degradation assessment, and physiologically plausible analysis of the PPG signal. We propose KID-PPG, a knowledge-informed deep learning model that integrates expert knowledge through adaptive linear filtering, deep probabilistic inference, and data augmentation. We evaluate KID-PPG on the PPGDalia dataset, achieving an average mean absolute error of 2.85 beats per minute, surpassing existing reproducible methods. Our results demonstrate a significant performance improvement in heart rate tracking through the incorporation of prior knowledge into deep learning models. This approach shows promise in enhancing various biomedical applications by incorporating existing expert knowledge in deep learning models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiological measurement, vol. 28, no. 3, p. R1, 2007.
  2. D. Biswas, N. Simões-Capela, C. Van Hoof, and N. Van Helleputte, “Heart rate estimation from wrist-worn photoplethysmography: A review,” IEEE Sensors Journal, vol. 19, no. 16, pp. 6560–6570, 2019.
  3. H. Lee, H. Chung, H. Ko, A. Parisi, A. Busacca, L. Faes, R. Pernice, and J. Lee, “Adaptive scheduling of acceleration and gyroscope for motion artifact cancelation in photoplethysmography,” Computer Methods and Programs in Biomedicine, vol. 226, p. 107126, 2022.
  4. Z. Zhang, “Heart rate monitoring from wrist-type photoplethysmographic (ppg) signals during intensive physical exercise,” in 2014 IEEE global conference on signal and information processing (GlobalSIP).   IEEE, 2014, pp. 698–702.
  5. Z. Zhang, Z. Pi, and B. Liu, “Troika: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise,” IEEE Transactions on biomedical engineering, vol. 62, no. 2, pp. 522–531, 2014.
  6. K. Xu, X. Jiang, and W. Chen, “Photoplethysmography motion artifacts removal based on signal-noise interaction modeling utilizing envelope filtering and time-delay neural network,” IEEE Sensors Journal, vol. 20, no. 7, pp. 3732–3744, 2019.
  7. D. Yang, Y. Cheng, J. Zhu, D. Xue, G. Abt, H. Ye, and Y. Peng, “A novel adaptive spectrum noise cancellation approach for enhancing heartbeat rate monitoring in a wearable device,” IEEE Access, vol. 6, pp. 8364–8375, 2018.
  8. T. Schäck, M. Muma, and A. M. Zoubir, “Computationally efficient heart rate estimation during physical exercise using photoplethysmographic signals,” in 2017 25th European Signal Processing Conference (EUSIPCO).   IEEE, 2017, pp. 2478–2481.
  9. S. M. Salehizadeh, D. Dao, J. Bolkhovsky, C. Cho, Y. Mendelson, and K. H. Chon, “A novel time-varying spectral filtering algorithm for reconstruction of motion artifact corrupted heart rate signals during intense physical activities using a wearable photoplethysmogram sensor,” Sensors, vol. 16, no. 1, p. 10, 2015.
  10. N. Huang and N. Selvaraj, “Robust ppg-based ambulatory heart rate tracking algorithm,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).   IEEE, 2020, pp. 5929–5934.
  11. M. Zhou and N. Selvaraj, “Heart rate monitoring using sparse spectral curve tracing,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).   IEEE, 2020, pp. 5347–5352.
  12. A. Reiss, I. Indlekofer, P. Schmidt, and K. Van Laerhoven, “Deep ppg: Large-scale heart rate estimation with convolutional neural networks,” Sensors, vol. 19, no. 14, p. 3079, 2019.
  13. P. Kasnesis, L. Toumanidis, A. Burrello, C. Chatzigeorgiou, and C. Z. Patrikakis, “Multi-head cross-attentional ppg and motion signal fusion for heart rate estimation,” arXiv preprint arXiv:2210.11415, 2022.
  14. A. Burrello, D. J. Pagliari, M. Risso, S. Benatti, E. Macii, L. Benini, and M. Poncino, “Q-ppg: Energy-efficient ppg-based heart rate monitoring on wearable devices,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 6, pp. 1196–1209, 2021.
  15. V. Bieri, P. Streli, B. U. Demirel, and C. Holz, “Beliefppg: Uncertainty-aware heart rate estimation from ppg signals via belief propagation,” arXiv preprint arXiv:2306.07730, 2023.
  16. D. Ray, T. Collins, and P. V. Ponnapalli, “Deeppulse: An uncertainty-aware deep neural network for heart rate estimations from wrist-worn photoplethysmography,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).   IEEE, 2022, pp. 1651–1654.
  17. A. Burrello, D. J. Pagliari, M. Bianco, E. Macii, L. Benini, M. Poncino, and S. Benatti, “Improving ppg-based heart-rate monitoring with synthetically generated data,” in 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS).   IEEE, 2022, pp. 153–157.
  18. L. Von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch, J. Pfrommer, A. Pick, R. Ramamurthy et al., “Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 1, pp. 614–633, 2021.
  19. G. Masinelli, F. Dell’Agnola, A. A. Valdés, and D. Atienza, “Spare: A spectral peak recovery algorithm for ppg signals pulsewave reconstruction in multimodal wearable devices,” Sensors, vol. 21, no. 8, p. 2725, 2021.
  20. S. B. Song, J. W. Nam, and J. H. Kim, “Nas-ppg: Ppg-based heart rate estimation using neural architecture search,” IEEE Sensors Journal, vol. 21, no. 13, pp. 14 941–14 949, 2021.
  21. M. Risso, A. Burrello, D. J. Pagliari, S. Benatti, E. Macii, L. Benini, and M. Pontino, “Robust and energy-efficient ppg-based heart-rate monitoring,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2021, pp. 1–5.
  22. L. Scimeca, S. J. Oh, S. Chun, M. Poli, and S. Yun, “Which shortcut cues will dnns choose? a study from the parameter-space perspective,” arXiv preprint arXiv:2110.03095, 2021.
  23. J. Y. A. Foo and S. J. Wilson, “A computational system to optimise noise rejection in photoplethysmography signals during motion or poor perfusion states,” Medical and Biological Engineering and Computing, vol. 44, pp. 140–145, 2006.
  24. Y. Ye, Y. Cheng, W. He, M. Hou, and Z. Zhang, “Combining nonlinear adaptive filtering and signal decomposition for motion artifact removal in wearable photoplethysmography,” IEEE Sensors Journal, vol. 16, no. 19, pp. 7133–7141, 2016.
  25. S. Kim, S. Im, and T. Park, “Characterization of quadratic nonlinearity between motion artifact and acceleration data and its application to heartbeat rate estimation,” Sensors, vol. 17, no. 8, p. 1872, 2017.
  26. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  27. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  28. A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for computer vision?” Advances in neural information processing systems, vol. 30, 2017.
  29. J. Cho, Y. Sung, K. Shin, D. Jung, Y. Kim, and N. Kim, “A preliminary study on photoplethysmogram (ppg) signal analysis for reduction of motion artifact in frequency domain,” in 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences.   IEEE, 2012, pp. 28–33.
  30. P. R. Rijnbeek, G. Van Herpen, M. L. Bots, S. Man, N. Verweij, A. Hofman, H. Hillege, M. E. Numans, C. A. Swenne, J. C. Witteman et al., “Normal values of the electrocardiogram for ages 16–90 years,” Journal of electrocardiology, vol. 47, no. 6, pp. 914–921, 2014.
  31. L. Chhabra, N. Goel, L. Prajapat, D. H. Spodick, and S. Goyal, “Mouse heart rate in a human: diagnostic mystery of an extreme tachyarrhythmia,” Indian pacing and electrophysiology journal, vol. 12, no. 1, pp. 32–35, 2012.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com