Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning in Short-Reach Optical Systems: A Comprehensive Survey (2405.09557v2)

Published 2 May 2024 in eess.SP and cs.LG

Abstract: In recent years, extensive research has been conducted to explore the utilization of machine learning algorithms in various direct-detected and self-coherent short-reach communication applications. These applications encompass a wide range of tasks, including bandwidth request prediction, signal quality monitoring, fault detection, traffic prediction, and digital signal processing (DSP)-based equalization. As a versatile approach, machine learning demonstrates the ability to address stochastic phenomena in optical systems networks where deterministic methods may fall short. However, when it comes to DSP equalization algorithms, their performance improvements are often marginal, and their complexity is prohibitively high, especially in cost-sensitive short-reach communications scenarios such as passive optical networks (PONs). They excel in capturing temporal dependencies, handling irregular or nonlinear patterns effectively, and accommodating variable time intervals. Within this extensive survey, we outline the application of machine learning techniques in short-reach communications, specifically emphasizing their utilization in high-bandwidth demanding PONs. Notably, we introduce a novel taxonomy for time-series methods employed in machine learning signal processing, providing a structured classification framework. Our taxonomy categorizes current time series methods into four distinct groups: traditional methods, Fourier convolution-based methods, transformer-based models, and time-series convolutional networks. Finally, we highlight prospective research directions within this rapidly evolving field and outline specific solutions to mitigate the complexity associated with hardware implementations. We aim to pave the way for more practical and efficient deployment of machine learning approaches in short-reach optical communication systems by addressing complexity concerns.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

We haven't generated a summary for this paper yet.