Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Co-learning-aided Multi-modal-deep-learning Framework of Passive DOA Estimators for a Heterogeneous Hybrid Massive MIMO Receiver (2405.09556v2)

Published 27 Apr 2024 in eess.SP, cs.AI, cs.IT, and math.IT

Abstract: Due to its excellent performance in rate and resolution, fully-digital (FD) massive multiple-input multiple-output (MIMO) antenna arrays has been widely applied in data transmission and direction of arrival (DOA) measurements, etc. But it confronts with two main challenges: high computational complexity and circuit cost. The two problems may be addressed well by hybrid analog-digital (HAD) structure. But there exists the problem of phase ambiguity for HAD, which leads to its low-efficiency or high-latency. Does exist there such a MIMO structure of owning low-cost, low-complexity and high time efficiency at the same time. To satisfy the three properties, a novel heterogeneous hybrid MIMO receiver structure of integrating FD and heterogeneous HAD ($\rm{H}2$AD-FD) is proposed and corresponding multi-modal (MD)-learning framework is developed. The framework includes three major stages: 1) generate the candidate sets via root multiple signal classification (Root-MUSIC) or deep learning (DL); 2) infer the class of true solutions from candidate sets using ML methods; 3) fuse the two-part true solutions to achieve a better DOA estimation. The above process form two methods named MD-Root-MUSIC and MDDL. To improve DOA estimation accuracy and reduce the clustering complexity, a co-learning-aided MD framework is proposed to form two enhanced methods named CoMDDL and CoMD-RootMUSIC. Moreover, the Cramer-Rao lower bound (CRLB) for the proposed $\rm{H}2$AD-FD structure is also derived. Experimental results demonstrate that our proposed four methods could approach the CRLB for signal-to-noise ratio (SNR) > 0 dB and the proposed CoMDDL and MDDL perform better than CoMD-RootMUSIC and MD-RootMUSIC, particularly in the extremely low SNR region.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Z. Zhu, S. Guo, J. Chen, S. Xue, Z. Xu, P. Wu, G. Cui, and L. Kong, “Non-line-of-sight targets localization algorithm via joint estimation of dod and doa,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–11, 2023.
  2. D. An, S. Chang, M. Hwang, Y. Youn, D. Kim, C. Lee, and W. Hong, “Diagnosis and modification of propagating electromagnetic waves using doa systems and em skins,” IEEE Transactions on Antennas and Propagation, vol. 72, no. 4, pp. 3629–3640, 2024.
  3. A. Gorcin and H. Arslan, “A two-antenna single rf front-end doa estimation system for wireless communications signals,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 10, pp. 5321–5333, 2014.
  4. R. Dong, S. Jiang, X. Hua, Y. Teng, F. Shu, and J. Wang, “Low-complexity joint phase adjustment and receive beamforming for directional modulation networks via irs,” IEEE open journal of the Communications Society, vol. 3, pp. 1234–1243, 2022.
  5. F. Shu, X. Wu, J. Hu, J. Li, R. Chen, and J. Wang, “Secure and precise wireless transmission for random-subcarrier-selection-based directional modulation transmit antenna array,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 4, pp. 890–904, 2018.
  6. F. Shu, Y. Teng, J. Li, M. Huang, W. Shi, J. Li, Y. Wu, and J. Wang, “Enhanced secrecy rate maximization for directional modulation networks via irs,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 8388–8401, 2021.
  7. F. Shu, T. Shen, L. Xu, Y. Qin, S. Wan, S. Jin, X. You, and J. Wang, “Directional modulation: A physical-layer security solution to b5g and future wireless networks,” IEEE Network, vol. 34, no. 2, pp. 210–216, 2020.
  8. H. A. Kassir, I. T. Rekanos, P. I. Lazaridis, T. V. Yioultsis, N. V. Kantartzis, C. S. Antonopoulos, G. K. Karagiannidis, and Z. D. Zaharis, “Doa estimation for 6g communication systems,” in 2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST), 2023, pp. 1–4.
  9. J. Zheng and Q. Zhang, “Secrecy outage probability of multiple-input–multiple-output secure internet of things communication systems,” IEEE Internet of Things Journal, vol. 11, no. 6, pp. 9843–9853, 2024.
  10. R. Roy, A. Paulraj, and T. Kailath, “Esprit–a subspace rotation approach to estimation of parameters of cisoids in noise,” IEEE transactions on acoustics, speech, and signal processing, vol. 34, no. 5, pp. 1340–1342, 1986.
  11. A. Barabell, “Improving the resolution performance of eigenstructure-based direction-finding algorithms,” in ICASSP’83. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 8.   IEEE, 1983, pp. 336–339.
  12. B. D. Rao and K. S. Hari, “Performance analysis of root-music,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 12, pp. 1939–1949, 1989.
  13. X. Zhang, X. Gao, and D. Xu, “Multi-invariance esprit-based blind doa estimation for mc-cdma with an antenna array,” IEEE Transactions on Vehicular Technology, vol. 58, no. 8, pp. 4686–4690, 2009.
  14. M. Pesavento, A. B. Gershman, and M. Haardt, “Unitary root-music with a real-valued eigendecomposition: A theoretical and experimental performance study,” IEEE transactions on signal processing, vol. 48, no. 5, pp. 1306–1314, 2000.
  15. F.-G. Yan, M. Jin, S. Liu, and X.-L. Qiao, “Real-valued music for efficient direction estimation with arbitrary array geometries,” IEEE Transactions on Signal Processing, vol. 62, no. 6, pp. 1548–1560, 2014.
  16. D. Zhang, Y. Zhang, G. Zheng, C. Feng, and J. Tang, “Improved doa estimation algorithm for co-prime linear arrays using root-music algorithm,” Electronics Letters, vol. 53, no. 18, pp. 1277–1279, 2017.
  17. D. Hu, Y. Zhang, L. He, and J. Wu, “Low-complexity deep-learning-based doa estimation for hybrid massive mimo systems with uniform circular arrays,” IEEE Wireless Communications Letters, vol. 9, no. 1, pp. 83–86, 2020.
  18. G. K. Papageorgiou, M. Sellathurai, and Y. C. Eldar, “Deep networks for direction-of-arrival estimation in low snr,” IEEE Transactions on Signal Processing, vol. 69, pp. 3714–3729, 2021.
  19. J. Ma, M. Wang, Y. Chen, and H. Wang, “Deep convolutional network-assisted multiple direction-of-arrival estimation,” IEEE Signal Processing Letters, 2024.
  20. J. A. Zhang, W. Ni, P. Cheng, and Y. Lu, “Angle-of-arrival estimation using different phase shifts across subarrays in localized hybrid arrays,” IEEE Communications Letters, vol. 20, no. 11, pp. 2205–2208, 2016.
  21. S.-F. Chuang, W.-R. Wu, and Y.-T. Liu, “High-resolution aoa estimation for hybrid antenna arrays,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 7, pp. 2955–2968, 2015.
  22. B. Shi, N. Chen, X. Zhu, Y. Qian, Y. Zhang, F. Shu, and J. Wang, “Impact of low-resolution adc on doa estimation performance for massive mimo receive array,” IEEE Systems Journal, vol. 16, no. 2, pp. 2635–2638, 2022.
  23. F. Shu, Y. Qin, T. Liu, L. Gui, Y. Zhang, J. Li, and Z. Han, “Low-Complexity and High-Resolution DOA Estimation for Hybrid Analog and Digital Massive MIMO Receive Array,” IEEE Trans. Commun, vol. 66, no. 6, pp. 2487–2501, 2018.
  24. B. Shi, X. Jiang, N. Chen, Y. Teng, J. Lu, F. Shu, J. Zou, J. Li, and J. Wang, “Fast ambiguous doa elimination method of doa measurement for hybrid massive mimo receiver,” Science China Information Sciences, vol. 65, p. 159302, 2022.
  25. Y. Chen, X. Zhan, F. Shu, Q. Jie, X. Cheng, Z. Zhuang, and J. Wang, “Two low-complexity doa estimators for massive/ultra-massive mimo receive array,” IEEE Wireless Communications Letters, vol. 11, no. 11, pp. 2385–2389, 2022.
  26. F. Shu, X. Zhan, W. Cai, M. Huang, Q. Jie, Y. Li, B. Shi, and J. Wang, “Machine-learning-aided massive hybrid analog and digital MIMO DOA estimation for future wireless networks,” CoRR, vol. abs/2201.04452, 2022. [Online]. Available: https://arxiv.org/abs/2201.04452
  27. B. Friedlander, “The root-MUSIC algorithm for direction finding with interpolated arrays,” Signal Processing, 1993.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com