Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singular parabolic operators in the half-space with boundary degeneracy: Dirichlet and oblique derivative boundary conditions (2405.09540v1)

Published 15 May 2024 in math.AP

Abstract: We study elliptic and parabolic problems governed by the singular elliptic operators $$ \mathcal L=y{\alpha_1}\mbox{Tr }\left(QD2_x\right)+2y{\frac{\alpha_1+\alpha_2}{2}}q\cdot \nabla_xD_y+\gamma y{\alpha_2} D_{yy}+y{\frac{\alpha_1+\alpha_2}{2}-1}\left(d,\nabla_x\right)+cy{\alpha_2-1}D_y-by{\alpha_2-2}$$ in the half-space $\mathcal{R}{N+1}_+={(x,y): x \in \mathcal{R}N, y>0}$, under Dirichlet or oblique derivative boundary conditions. In the special case $\alpha_1=\alpha_2=\alpha$ the operator $\mathcal L$ takes the form $$ \mathcal L=y{\alpha}\mbox{Tr }\left(AD2\right)+y{\alpha-1}\left(v,\nabla\right)-by{\alpha-2},$$ where $v=(d,c)\in\mathcal{R}{N+1}$, $b\in\mathcal{R}$ and $ A=\left( \begin{array}{c|c} Q & { q}t \[1ex] \hline q& \gamma \end{array}\right)$ is an elliptic matrix. We prove elliptic and parabolic $Lp$-estimates and solvability for the associated problems. In the language of semigroup theory, we prove that $\mathcal L$ generates an analytic semigroup, characterize its domain as a weighted Sobolev space and show that it has maximal regularity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator. Communications in Partial Differential Equations 43, 1 (2018), 1–24.
  2. Higher order schauder estimates for parabolic equations with degenerate or singular weights, 2024.
  3. Schauder estimates for parabolic equations with degenerate or singular weights, 2024.
  4. An extension problem related to the fractional Laplacian. Communications in Partial Differential Equations 32, 8 (2007), 1245–1260.
  5. Optimal kernel estimates for elliptic operators with second order discontinuous coefficients. Journal of Mathematical Analysis and Applications 485, 1 (2020), 123763.
  6. Schauder type estimates for degenerate or singular elliptic equations with dini mean oscillation coefficients with application, 2024.
  7. Weighted mixed-norm Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-estimates for elliptic and parabolic equations in non-divergence form with singular coefficients. Revista Matematica Iberoamericana 37, 04 (2020).
  8. Parabolic and elliptic equations with singular or degenerate coefficients: The Dirichlet problem. Transaction of the American Mathematical Society 374, 09 (2021).
  9. On parabolic and elliptic equations with singular or degenerate coefficients. Indiana Univ. Math. J. 72 (2023), 1461–1502.
  10. Weighted mixed-norm Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT estimates for equations in non-divergence form with singular coefficients: The Dirichlet problem. Journal of Functional Analysis 285, 2 (2023), 109964.
  11. Nondivergence form degenerate linear parabolic equations on the upper half space. Journal of Functional Analysis 286, 9 (2024), 110374.
  12. Analytic semigroups generated in Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT by elliptic operators with high order degeneracy at the boundary. Note Mat. 31, 1 (2011), 103–115.
  13. Extension problem and fractional operators: semigroups and wave equations. Journal of Evolution Equations 13 (2013), 343–368.
  14. Analysis in Banach Spaces, Vol. I: Martingales and Littlewood-Paley Theory. Springer, 2016.
  15. Analysis in Banach Spaces, Vol. II: Probabilistic Methods and Operator Theory. Springer, 2017.
  16. Higher order boundary harnack principles in dini type domains, 2023.
  17. Krylov, N. V. Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, vol. 96 of Graduate Studies in Mathematics. Amer. Math. Soc., 2008.
  18. Maximal Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-regularity for parabolic equations, Fourier multiplier theorems and H∞superscript𝐻H^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-functional calculus. In Iannelli M., Nagel R., Piazzera S. (eds) Functional Analytic Methods for Evolution Equations, vol. 1855 of Lecture Notes in Mathematics. Springer, Berlin, 2004.
  19. Elliptic theory of differential edge operators, ii: Boundary value problems. Indiana University Mathematics Journal 63, 6 (2014), 1911–1955.
  20. Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients. Journal of Evolution Equations 18 (2018), 467–514.
  21. Gradient estimates for elliptic operators with second-order discontinuous coefficients. Mediterranean Journal of Mathematics 16, 138 (2019).
  22. Maximal regularity for elliptic operators with second-order discontinuous coefficients. Journal of Evolution Equations 21 (2021), 3613–3637.
  23. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT estimates for the Caffarelli-Silvestre extension operators. Journal of Differential Equations 316 (2022), 290–345.
  24. Anisotropic Sobolev Spaces with Weights. Tokyo Journal of Mathematics 46, 2 (2023), 313 – 337. doi: 10.3836/tjm/1502179386.
  25. Regularity theory for parabolic operators in the half-space with boundary degeneracy, 2023. arxiv:2309.14319.
  26. Schauder estimates for Bessel operators. Forum Mathematicum (2023). doi:10.1515/forum-2023-0334.
  27. A unified approach to degenerate problems in the half-space. Journal of Differential Equations 351 (2023), 63–99.
  28. Singular parabolic problems in the half-space, 2024. To appear on Studia Mathematica. Online preprint, arxiv: 2303.05467.
  29. Elliptic and parabolic problems for a class of operators with discontinuous coefficients. Annali SNS XIX (2019), 601–654.
  30. Asymptotic behaviour for elliptic operators with second-order discontinuous coefficients. Forum Mathematicum 32, 2 (2020), 399–415.
  31. Kernel bounds for parabolic operators having first-order degeneracy at the boundary, 2024. arXiv:2403.01959.
  32. Liouville type theorems and regularity of solutions to degenerate or singular problems part i: even solutions. Communications in Partial Differential Equations 46, 2 (2021), 310–361.
  33. Liouville type theorems and regularity of solutions to degenerate or singular problems part ii: odd solutions. Mathematics in Engineering 3, 1 (2021), 1–50.
  34. Extension problem and Harnack’s inequality for some fractional operators. Communications in Partial Differential Equations 35, 11 (2010), 2092–2122.
  35. Higher order boundary harnack principle via degenerate equations. Archive for Rational Mechanics and Analysis 248, 2 (2024).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com