Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single Kerr-Schild Metric for Taub-NUT Instanton (2405.09518v4)

Published 15 May 2024 in hep-th and gr-qc

Abstract: It is shown that a complex coordinate transformation maps the Taub-NUT instanton metric to a Kerr-Schild metric. This metric involves a semi-infinite line defect as the gravitational analog of the Dirac string, much like the original metric. Moreover, it facilitates three versions of classical double copy correspondence with the self-dual dyon in electromagnetism, one of which involving a nonlocal operator. The relevance to the Newman-Janis algorithm is briefly noted.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (140)
  1. R. Monteiro, D. O’Connell, and C. D. White, “Black holes and the double copy,” Journal of High Energy Physics 2014 no. 12, (2014) 1–23.
  2. A. Luna, R. Monteiro, I. Nicholson, and D. O’Connell, “Type D spacetimes and the Weyl double copy,” Classical and Quantum Gravity 36 no. 6, (2019) 065003.
  3. E. Chacón, S. Nagy, and C. D. White, “The Weyl double copy from twistor space,” Journal of High Energy Physics 2021 no. 5, (2021) 1–40.
  4. C. D. White, “Twistorial foundation for the classical double copy,” Physical Review Letters 126 no. 6, (2021) 061602.
  5. A. Luna, N. Moynihan, and C. D. White, “Why is the Weyl double copy local in position space?,” JHEP 12 (2022) 046, arXiv:2208.08548 [hep-th].
  6. A. Luna, R. Monteiro, D. O’Connell, and C. D. White, “The classical double copy for Taub–NUT spacetime,” Phys. Lett. B 750 (2015) 272–277, arXiv:1507.01869 [hep-th].
  7. D. S. Berman, E. Chacón, A. Luna, and C. D. White, “The self-dual classical double copy, and the Eguchi-Hanson instanton,” JHEP 01 (2019) 107, arXiv:1809.04063 [hep-th].
  8. G. Elor, K. Farnsworth, M. L. Graesser, and G. Herczeg, “The Newman-Penrose map and the classical double copy,” Journal of High Energy Physics 2020 no. 12, (2020) 1–37.
  9. I. Bah, R. Dempsey, and P. Weck, “Kerr-Schild double copy and complex worldlines,” Journal of High Energy Physics 2020 no. 2, (2020) 1–34.
  10. M. Carrillo González, B. Melcher, K. Ratliff, S. Watson, and C. D. White, “The classical double copy in three spacetime dimensions,” JHEP 07 (2019) 167, arXiv:1904.11001 [hep-th].
  11. M. Carrillo-González, R. Penco, and M. Trodden, “The classical double copy in maximally symmetric spacetimes,” JHEP 04 (2018) 028, arXiv:1711.01296 [hep-th].
  12. R. Monteiro, D. O’Connell, D. Peinador Veiga, and M. Sergola, “Classical solutions and their double copy in split signature,” JHEP 05 (2021) 268, arXiv:2012.11190 [hep-th].
  13. R. Monteiro, S. Nagy, D. O’Connell, D. Peinador Veiga, and M. Sergola, “NS-NS spacetimes from amplitudes,” JHEP 06 (2022) 021, arXiv:2112.08336 [hep-th].
  14. N. Bahjat-Abbas, A. Luna, and C. D. White, “The Kerr-Schild double copy in curved spacetime,” JHEP 12 (2017) 004, arXiv:1710.01953 [hep-th].
  15. A. Banerjee, E. O. Colgáin, J. A. Rosabal, and H. Yavartanoo, “Ehlers as EM duality in the double copy,” Phys. Rev. D 102 (2020) 126017, arXiv:1912.02597 [hep-th].
  16. L. Alfonsi, C. D. White, and S. Wikeley, “Topology and Wilson lines: global aspects of the double copy,” JHEP 07 (2020) 091, arXiv:2004.07181 [hep-th].
  17. R. Monteiro and D. O’Connell, “The kinematic algebra from the self-dual sector,” Journal of High Energy Physics 2011 no. 7, (2011) 1–24.
  18. H. Kawai, D. C. Lewellen, and S. H. H. Tye, “A Relation Between Tree Amplitudes of Closed and Open Strings,” Nucl. Phys. B 269 (1986) 1–23.
  19. Z. Bern, J. J. M. Carrasco, and H. Johansson, “Perturbative Quantum Gravity as a Double Copy of Gauge Theory,” Phys. Rev. Lett. 105 (2010) 061602, arXiv:1004.0476 [hep-th].
  20. Z. Bern, T. Dennen, Y.-t. Huang, and M. Kiermaier, “Gravity as the Square of Gauge Theory,” Phys. Rev. D 82 (2010) 065003, arXiv:1004.0693 [hep-th].
  21. Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and R. Roiban, “The duality between color and kinematics and its applications,” arXiv:1909.01358 [hep-th].
  22. N. Arkani-Hamed, Y.-t. Huang, and D. O’Connell, “Kerr black holes as elementary particles,” JHEP 01 (2020) 046, arXiv:1906.10100 [hep-th].
  23. A. H. Taub, “Empty space-times admitting a three parameter group of motions,” Annals Math. 53 (1951) 472–490.
  24. E. Newman, L. Tamburino, and T. Unti, “Empty space generalization of the Schwarzschild metric,” J. Math. Phys. 4 (1963) 915.
  25. C. W. Misner, “The Flatter regions of Newman, Unti and Tamburino’s generalized Schwarzschild space,” J. Math. Phys. 4 (1963) 924–938.
  26. W. B. Bonnor, “A new interpretation of the NUT metric in general relativity,” Math. Proc. Cambridge Phil. Soc. 66 no. 1, (1969) 145–151.
  27. A. Sackfield, “Physical interpretation of NUT metric,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 70, pp. 89–94, Cambridge University Press. 1971.
  28. J. Dowker and J. Roche, “The gravitational analogues of magnetic monopoles,” Proceedings of the Physical Society (1958-1967) 92 no. 1, (1967) 1.
  29. Y. Cho, “Magnetic theory of gravitation,” in Primordial Nucleosynthesis and Evolution of Early Universe, pp. 203–211. Springer, 1991.
  30. J. Samuel and B. Iyer, “A gravitational analog of the Dirac monopole,” Current Science (1986) 818–824.
  31. R. Maartens and B. A. Bassett, “Gravito-electromagnetism,” Classical and Quantum Gravity 15 no. 3, (1998) 705.
  32. J. F. Plebański, “A class of solutions of Einstein-Maxwell equations,” Annals Phys. 90 no. 1, (1975) 196–255.
  33. Z. W. Chong, G. W. Gibbons, H. Lu, and C. N. Pope, “Separability and killing tensors in Kerr-Taub-NUT-de sitter metrics in higher dimensions,” Phys. Lett. B 609 (2005) 124–132, arXiv:hep-th/0405061.
  34. S. W. Hawking, “Gravitational instantons,” Physics Letters A 60 no. 2, (1977) 81–83.
  35. G. W. Gibbons and S. W. Hawking, “Gravitational Multi-Instantons,” Phys. Lett. B 78 (1978) 430.
  36. T. Adamo, G. Bogna, L. Mason, and A. Sharma, “Scattering on self-dual Taub-NUT,” arXiv:2309.03834 [hep-th].
  37. A. Guevara and U. Kol, “Self Dual Black Holes as the Hydrogen Atom,” arXiv:2311.07933 [hep-th].
  38. E. Crawley, A. Guevara, N. Miller, and A. Strominger, “Black holes in Klein space,” JHEP 10 (2022) 135, arXiv:2112.03954 [hep-th].
  39. E. Crawley, A. Guevara, E. Himwich, and A. Strominger, “Self-dual black holes in celestial holography,” JHEP 09 (2023) 109, arXiv:2302.06661 [hep-th].
  40. G. W. Gibbons and P. J. Ruback, “The Hidden Symmetries of Taub-NUT and Monopole Scattering,” Phys. Lett. B 188 (1987) 226.
  41. G. W. Gibbons and P. J. Ruback, “The Hidden Symmetries of Multicenter Metrics,” Commun. Math. Phys. 115 (1988) 267.
  42. P. A. M. Dirac, “Quantised singularities in the electromagnetic field,,” Proc. Roy. Soc. Lond. A 133 no. 821, (1931) 60–72.
  43. P. A. M. Dirac, “The Theory of magnetic poles,” Phys. Rev. 74 (1948) 817–830.
  44. J. Vines, “Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings,” Classical and Quantum Gravity 35 no. 8, (2018) 084002.
  45. A. Guevara, “Reconstructing Classical Spacetimes from the S-Matrix in Twistor Space,” arXiv:2112.05111 [hep-th].
  46. R. Penrose and W. Rindler, “Spinors and space-time: Volume 2, spinor and twistor methods in space-time geometry,”.
  47. M. Walker and R. Penrose, “On quadratic first integrals of the geodesic equations for type [22] spacetimes,” Commun. Math. Phys. 18 (1970) 265–274.
  48. L. P. Hughston, R. Penrose, P. Sommers, and M. Walker, “On a quadratic first integral for the charged particle orbits in the charged kerr solution,” Commun. Math. Phys. 27 (1972) 303–308.
  49. L. P. Hughston and P. Sommers, “Spacetimes with killing tensors,” Communications in Mathematical Physics 32 (1973) 147–152.
  50. D. Zwanziger, “Local Lagrangian quantum field theory of electric and magnetic charges,” Phys. Rev. D 3 (1971) 880.
  51. F. V. Gubarev, M. I. Polikarpov, and V. I. Zakharov, “Monopole - anti-monopole interaction in Abelian Higgs model,” Phys. Lett. B 438 (1998) 147–153, arXiv:hep-th/9805175.
  52. Y. Shnir, “Magnetic monopoles,” Phys. Part. Nucl. Lett. 8 (2011) 749–754.
  53. J. Terning and C. B. Verhaaren, “Spurious Poles in the Scattering of Electric and Magnetic Charges,” JHEP 12 (2020) 153, arXiv:2010.02232 [hep-th].
  54. N. Moynihan and J. Murugan, “On-shell electric-magnetic duality and the dual graviton,” Phys. Rev. D 105 no. 6, (2022) 066025, arXiv:2002.11085 [hep-th].
  55. E. T. Newman and A. I. Janis, “Note on the Kerr spinning particle metric,” J. Math. Phys. 6 (1965) 915–917.
  56. Technically, this holds off the Dirac string or when the Dirac string is hidden.
  57. J. F. Plebanski, “Some solutions of complex einstein equations,” Journal of Mathematical Physics 16 no. 12, (1975) 2395–2402.
  58. J. F. Plebanski, “On the separation of Einsteinian substructures,” J. Math. Phys. 18 (1977) 2511–2520.
  59. E. T. Newman, “The Bondi-Metzner-Sachs group: Its complexification and some related curious consequences,” in General relativity and gravitation: proceedings of the seventh international conference (GR7), Tel-Aviv University, June 23-28, 1974, Shaviv, Giora and Rosen, Joseph, Relativity and Gravitation, 1975 (1975) .
  60. E. T. Newman, “Heaven and its properties,” General Relativity and Gravitation 7 no. 1, (1976) 107–111.
  61. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21–52.
  62. R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A 270 (1962) 103–126.
  63. A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory.” no note, 3, 2017.
  64. H. Godazgar, M. Godazgar, and C. N. Pope, “Dual gravitational charges and soft theorems,” JHEP 10 (2019) 123, arXiv:1908.01164 [hep-th].
  65. H. Godazgar, M. Godazgar, and C. N. Pope, “Taub-NUT from the Dirac monopole,” Phys. Lett. B 798 (2019) 134938, arXiv:1908.05962 [hep-th].
  66. T. T. Wu and C. N. Yang, “Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields,” Phys. Rev. D 12 (1975) 3845–3857.
  67. Note that repositioning the string commutes with the double copy: the single copy of Eq. (10) exactly describes the SDD with north-pointing Dirac string.
  68. defined as a constant since the spacetime is stationary
  69. Note that ξ~¯≠ξ¯~𝜉𝜉\bar{{\tilde{\xi}}}\neq\xiover¯ start_ARG over~ start_ARG italic_ξ end_ARG end_ARG ≠ italic_ξ.
  70. D. Tong, “Gauge theory,” Lecture notes, DAMTP Cambridge 10 (2018) .
  71. C. Cheung, M. Derda, J.-H. Kim, V. Nevoa, I. Rothstein, and N. Shah, “Generalized Symmetry in Dynamical Gravity,” arXiv:2403.01837 [hep-th].
  72. J. Sakurai, “Comments on quantum-mechanical interference due to the earth’s rotation,” Physical Review D 21 no. 10, (1980) 2993.
  73. R. L. Zimmerman and B. Y. Shahir, “Geodesics for the NUT metric and gravitational monopoles,” General relativity and gravitation 21 no. 8, (1989) 821–848.
  74. To understand this quickly, note that the Coriolis force 2⁢m⁢v→×ω→2𝑚→𝑣→𝜔2m\vec{v}{\,\times\hskip 1.00006pt}\vec{\omega}2 italic_m over→ start_ARG italic_v end_ARG × over→ start_ARG italic_ω end_ARG is analogous to the Lorentz force q⁢v→×B→𝑞→𝑣→𝐵q\vec{v}{\,\times}\smash{\vec{B}}italic_q over→ start_ARG italic_v end_ARG × over→ start_ARG italic_B end_ARG [72].
  75. In this sense the “field strength” of gravity is torsion: note that Eq. (13) can be interpreted as the torsion two-form generated by the multivalued diffeomorphism (d⁢d⁢xμ=Γμ⁢dν⁢ρ⁢xρ∧d⁢xν=12⁢Tμ⁢dρ⁢σ⁢xρ∧d⁢xσ𝑑𝑑superscript𝑥𝜇superscriptΓ𝜇subscript𝑑𝜈𝜌superscript𝑥𝜌𝑑superscript𝑥𝜈12superscript𝑇𝜇subscript𝑑𝜌𝜎superscript𝑥𝜌𝑑superscript𝑥𝜎ddx^{\mu}=\Gamma^{\mu}{}_{\nu\rho}\hskip 1.00006ptdx^{\rho}{\hskip 1.00006pt{% \wedge}\,}dx^{\nu}=\frac{1}{2}\hskip 1.00006ptT^{\mu}{}_{\rho\sigma}\hskip 1.0% 0006ptdx^{\rho}{\hskip 1.00006pt{\wedge}\,}dx^{\sigma}italic_d italic_d italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = roman_Γ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT italic_ν italic_ρ end_FLOATSUBSCRIPT italic_d italic_x start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT ∧ italic_d italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_T start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT italic_ρ italic_σ end_FLOATSUBSCRIPT italic_d italic_x start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT ∧ italic_d italic_x start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT) [131, 132, 133]. This might be suggesting a realization of color-kinematics duality in terms of Einstein-Cartan theory or teleparallel gravity.
  76. W. Israel, “Source of the Kerr metric,” Physical Review D 2 no. 4, (1970) 641.
  77. H. Balasin and H. Nachbagauer, “Distributional energy momentum tensor of the Kerr-Newman space-time family,” Class. Quant. Grav. 11 (1994) 1453–1462, arXiv:gr-qc/9312028.
  78. H. Balasin and H. Nachbagauer, “The energy-momentum tensor of a black hole, or what curves the Schwarzschild geometry?,” Class. Quant. Grav. 10 (1993) 2271, arXiv:gr-qc/9305009.
  79. Given the GSF condition, the Kerr-Schild “graviton field” decomposes as gμ⁢ν−ημ⁢ν=ϕ⁢ℓμ⁢ℓν=hμ⁢νL+ 2⁢m⁢∂(μξν)g_{\mu\nu}{\,-\,}\eta_{\mu\nu}=\phi\hskip 1.00006pt\ell_{\mu}\ell_{\nu}=\smash% {{}^{\text{L}}\kern-0.50003pth_{\mu\nu}}{\,+\,}2m\hskip 1.00006pt\partial_{% \smash{(\mu}\vphantom{\mu}}\xi_{\smash{\nu)}\vphantom{\nu}}italic_g start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT - italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT = italic_ϕ roman_ℓ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT = start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT + 2 italic_m ∂ start_POSTSUBSCRIPT ( italic_μ end_POSTSUBSCRIPT italic_ξ start_POSTSUBSCRIPT italic_ν ) end_POSTSUBSCRIPT with h¯μ⁢νL=2⁢u(μ⁢(Aν)L)\smash{{}^{\text{L}}\kern-0.50003pt\bar{h}^{\mu\nu}}=\smash{2u^{(\mu}(\smash{{% }^{\text{L}}\kern-0.50003ptA^{\nu)}})}start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT over¯ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT = 2 italic_u start_POSTSUPERSCRIPT ( italic_μ end_POSTSUPERSCRIPT ( start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_ν ) end_POSTSUPERSCRIPT ) and ξμ=χ⁢uμ−(ℓμ−uμ)subscript𝜉𝜇𝜒subscript𝑢𝜇subscriptℓ𝜇subscript𝑢𝜇\xi_{\mu}=\chi\hskip 1.00006ptu_{\mu}-(\ell_{\mu}{\,-\,}u_{\mu})italic_ξ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = italic_χ italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - ( roman_ℓ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ), provided that the single copy gauge potential is given in Kerr-Schild and Lorenz gauges as ϕ⁢ℓμ=AμL+q⁢∂μχitalic-ϕsubscriptℓ𝜇superscriptsubscript𝐴𝜇L𝑞subscript𝜇𝜒\phi\hskip 1.00006pt\ell_{\mu}=\smash{{}^{\text{L}}\kern-0.50003ptA_{\mu}}+q% \hskip 1.00006pt\partial_{\mu}\chiitalic_ϕ roman_ℓ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_A start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT + italic_q ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_χ. Interestingly, the harmonic (Lorenz) gauge condition ∂ν(h¯μ⁢νL)=0subscript𝜈superscriptsuperscript¯ℎ𝜇𝜈L0\partial_{\nu}(\smash{{}^{\text{L}}\kern-0.50003pt\bar{h}^{\mu\nu}})=0∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT over¯ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ) = 0 is satisfied, so ϕ⁢ℓμ⁢ℓνitalic-ϕsubscriptℓ𝜇subscriptℓ𝜈\phi\hskip 1.00006pt\ell_{\mu}\ell_{\nu}italic_ϕ roman_ℓ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT solves linearized Einstein’s equations with source Tμ⁢νL:=12⁢□⁢(h¯μ⁢νL)=u(μ⁢(□⁢Aν)L)=u(μ⁢Jν)\smash{{}^{\text{L}}\kern-0.50003ptT^{\mu\nu}}:={\textstyle\frac{1}{2}}\hskip 1% .00006pt\square(\smash{{}^{\text{L}}\kern-0.50003pt\bar{h}^{\mu\nu}})=\smash{u% ^{(\mu}(\square\smash{{}^{\text{L}}\kern-0.50003ptA}^{\nu)})}=\smash{u^{(\mu}J% ^{\nu)}}start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT := divide start_ARG 1 end_ARG start_ARG 2 end_ARG □ ( start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT over¯ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ) = italic_u start_POSTSUPERSCRIPT ( italic_μ end_POSTSUPERSCRIPT ( □ start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_ν ) end_POSTSUPERSCRIPT ) = italic_u start_POSTSUPERSCRIPT ( italic_μ end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT italic_ν ) end_POSTSUPERSCRIPT. In this sense Tμ⁢νL=u(μ⁢Jν)\smash{{}^{\text{L}}\kern-0.50003ptT^{\mu\nu}}=\smash{u^{(\mu}J^{\nu)}}start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT = italic_u start_POSTSUPERSCRIPT ( italic_μ end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT italic_ν ) end_POSTSUPERSCRIPT could be identified as a source for the solution. We have been presuming stationary solutions with Killing vector uμ=δμ0u^{\mu}=\delta^{\mu}{}_{0}italic_u start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = italic_δ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT and also assumed ℓμ⁢uμ=−1subscriptℓ𝜇superscript𝑢𝜇1\ell_{\mu}u^{\mu}=-1roman_ℓ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = - 1, while overbar has denoted trace reversion. Note that this stress-energy tensor is consistent with the Kerr-Schild double copy, which states Jμ=−2T¯μ0J^{\mu}{\,=\,}-2\bar{T}^{\mu}{}_{0}italic_J start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = - 2 over¯ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT [10, 11].
  80. in the sense that T00superscript𝑇00T^{00}italic_T start_POSTSUPERSCRIPT 00 end_POSTSUPERSCRIPT vanishes
  81. Ref. [45] has half-Fourier transformed only the massless leg to the twistor space. See Ref. [134] for the possibility of half-Fourier transforming the massive legs as well.
  82. R. Penrose, “Solutions of the zero-rest-mass equations,” J. Math. Phys. 10 (1969) 38–39.
  83. M. Atiyah, M. Dunajski, and L. Mason, “Twistor theory at fifty: from contour integrals to twistor strings,” Proc. Roy. Soc. Lond. A 473 no. 2206, (2017) 20170530, arXiv:1704.07464 [hep-th].
  84. In particular, the Newman-Janis shift is essentially the same argument applied to the Kerr solution [36, 55, 126, 128, 1, 127], but concretely verifying that SDTN is the “self-dual part” of Kerr requires a nontrivial discussion [129, 130, 38, 117].
  85. A. I. Harte and J. Vines, “Generating exact solutions to Einstein’s equation using linearized approximations,” Phys. Rev. D 94 no. 8, (2016) 084009, arXiv:1608.04359 [gr-qc].
  86. B. C. Xanthopoulos, “Exact vacuum solutions of einstein’s equation from linearized solutions,” Journal of Mathematical Physics 19 no. 7, (1978) 1607–1609.
  87. This can be explicitly checked by noting that the ∂μℓνsubscript𝜇subscriptℓ𝜈\partial_{\mu}\ell_{\nu}∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT equation in the previous page is reproduced by a spinor equation ∂γ⁢γ˙o~α˙=(1/r)⁢δγ⁢δ˙⁢o~δ˙⁢o~γ˙⁢ι¯α˙subscript𝛾˙𝛾superscript~𝑜˙𝛼1𝑟subscript𝛿𝛾˙𝛿superscript~𝑜˙𝛿subscript~𝑜˙𝛾superscript¯𝜄˙𝛼\partial_{\smash{{\gamma}{\dot{{\gamma}}}}\vphantom{\beta}}\hskip 1.00006pt% \tilde{o}^{{\dot{\alpha}}}=(1/r)\hskip 1.00006pt\smash{\delta_{\smash{{\gamma}% {\dot{{\delta}}}}\vphantom{\beta}}\tilde{o}^{{\dot{{\delta}}}}\hskip 0.50003pt% \tilde{o}_{{\dot{{\gamma}}}}}\hskip 1.00006pt{\bar{\iota}}^{{\dot{\alpha}}}∂ start_POSTSUBSCRIPT italic_γ over˙ start_ARG italic_γ end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_o end_ARG start_POSTSUPERSCRIPT over˙ start_ARG italic_α end_ARG end_POSTSUPERSCRIPT = ( 1 / italic_r ) italic_δ start_POSTSUBSCRIPT italic_γ over˙ start_ARG italic_δ end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_o end_ARG start_POSTSUPERSCRIPT over˙ start_ARG italic_δ end_ARG end_POSTSUPERSCRIPT over~ start_ARG italic_o end_ARG start_POSTSUBSCRIPT over˙ start_ARG italic_γ end_ARG end_POSTSUBSCRIPT over¯ start_ARG italic_ι end_ARG start_POSTSUPERSCRIPT over˙ start_ARG italic_α end_ARG end_POSTSUPERSCRIPT. Note also that the Goldberg-Sachs theorem [135, 136] implies they are GSF in the curved background as well.
  88. S. A. Huggett and K. P. Tod, An Introduction to Twistor Theory. London Mathematical Society Student Texts. Cambridge University Press, 2 ed., 1994.
  89. R. Penrose, “Twistor algebra,” Journal of Mathematical Physics 8 no. 2, (1967) 345–366.
  90. E. T. Newman, “Maxwell fields and shear-free null geodesic congruences,” Classical and Quantum Gravity 21 no. 13, (2004) 3197.
  91. This function can be written as i⁢Z~A⁢uμ⁢(γμ)A⁢I¯CBC⁢Z~B𝑖superscript~𝑍Asubscript𝑢𝜇subscriptsuperscript𝛾𝜇Asuperscriptsubscript¯𝐼CBCsuperscript~𝑍Bi\hskip 1.00006pt\smash{\tilde{Z}}^{\mathrm{A}}\hskip 1.00006ptu_{\mu}(\gamma^% {\mu})_{\mathrm{A}}{}^{\mathrm{C}}\hskip 1.00006pt\bar{I}_{{\mathrm{C}}{% \mathrm{B}}}\hskip 1.00006pt\smash{\tilde{Z}}^{\mathrm{B}}italic_i over~ start_ARG italic_Z end_ARG start_POSTSUPERSCRIPT roman_A end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ( italic_γ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT roman_A end_POSTSUBSCRIPT start_FLOATSUPERSCRIPT roman_C end_FLOATSUPERSCRIPT over¯ start_ARG italic_I end_ARG start_POSTSUBSCRIPT roman_CB end_POSTSUBSCRIPT over~ start_ARG italic_Z end_ARG start_POSTSUPERSCRIPT roman_B end_POSTSUPERSCRIPT, where I¯ABsubscript¯𝐼AB\bar{I}_{{\mathrm{A}}{\mathrm{B}}}over¯ start_ARG italic_I end_ARG start_POSTSUBSCRIPT roman_AB end_POSTSUBSCRIPT denotes infinity twistor.
  92. R. Penrose and G. A. J. Sparling, “The twistor quadrille,” Twistor Newsletter 1 (1976) 10–13.
  93. G. A. J. Sparling, “The non-linear graviton representing the analogue of schwarzschild or kerr black holes,” Twistor Newsletter 1 (1976) 14–17.
  94. Pitman, 1979.
  95. In this sense SDTN is a “square root” of Schwarzschild (not in the double copy sense, of course). Namely, SDTN is the “self-dual part” of Schwarzschild also at the level of GSF congruences. It would be interesting to experiment a further mix-and-match of null GSF congruences, such as one copy of SDTN congruence for the right-handed tensored with one copy of Robinson congruence for the left-handed.
  96. P. A. M. Dirac, “The theory of magnetic poles,” Physical Review 74 no. 7, (1948) 817.
  97. D. Zwanziger, “Quantum field theory of particles with both electric and magnetic charges,” Phys. Rev. 176 (1968) 1489–1495.
  98. This is the gravitational analog of “Gilbert-Ampère duality” described in footnote [95]. Note that a static gravitational dyon (m,−i⁢m)𝑚𝑖𝑚(m,-im)( italic_m , - italic_i italic_m ) is precisely described by Tμ⁢ν=m⁢uμ⁢uν⁢δ(3)⁢(x→)superscript𝑇𝜇𝜈𝑚superscript𝑢𝜇superscript𝑢𝜈superscript𝛿3→𝑥T^{\mu\nu}=mu^{\mu}u^{\nu}\hskip 1.00006pt\delta^{(3)}(\vec{x})italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT = italic_m italic_u start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG ) and T⋆μ⁢ν=−i⁢m⁢uμ⁢uν⁢δ(3)⁢(x→)superscript𝑇⋆absent𝜇𝜈𝑖𝑚superscript𝑢𝜇superscript𝑢𝜈superscript𝛿3→𝑥T^{\star\mu\nu}=-imu^{\mu}u^{\nu}\hskip 1.00006pt\delta^{(3)}(\vec{x})italic_T start_POSTSUPERSCRIPT ⋆ italic_μ italic_ν end_POSTSUPERSCRIPT = - italic_i italic_m italic_u start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG ).
  99. Y.-T. Huang, U. Kol, and D. O’Connell, “Double copy of electric-magnetic duality,” Phys. Rev. D 102 no. 4, (2020) 046005, arXiv:1911.06318 [hep-th].
  100. W. T. Emond, Y.-T. Huang, U. Kol, N. Moynihan, and D. O’Connell, “Amplitudes from Coulomb to Kerr-Taub-NUT,” JHEP 05 (2022) 055, arXiv:2010.07861 [hep-th].
  101. N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang, “Scattering amplitudes for all masses and spins,” JHEP 11 (2021) 070, arXiv:1709.04891 [hep-th].
  102. Duff construction [140] from the Gilbertian linearized sources might be not straightforward by the failure of electric-magnetic duality due to the inherent nonlinearity of gravity [141]. Meanwhile, switching between the Ampèrian and Gilbertian pictures at the nonlinear level might be realized by the duality observed in Ref. [142].
  103. J. F. Plebanski and H. Garcia-Compean, “A q deformed version of the heavenly equations,” Int. J. Mod. Phys. A 10 (1995) 3371–3379, arXiv:hep-th/9405073.
  104. Q.-H. Park, “Selfdual Yang-Mills (+ gravity) as a 2-D sigma model,” Phys. Lett. B 257 (1991) 105–110.
  105. Q.-H. Park, “2-D sigma model approach to 4-D instantons,” Int. J. Mod. Phys. A 7 (1992) 1415–1448.
  106. V. Husain, “Selfdual gravity as a two-dimensional theory and conservation laws,” Class. Quant. Grav. 11 (1994) 927–938, arXiv:gr-qc/9310003.
  107. C. Cheung, J. Mangan, J. Parra-Martinez, and N. Shah, “Non-perturbative Double Copy in Flatland,” Phys. Rev. Lett. 129 no. 22, (2022) 221602, arXiv:2204.07130 [hep-th].
  108. K. Armstrong-Williams, C. D. White, and S. Wikeley, “Non-perturbative aspects of the self-dual double copy,” JHEP 08 (2022) 160, arXiv:2205.02136 [hep-th].
  109. Explicitly, it follows that Aα⁢α˙=−2⁢oα⁢∂0⁢α˙(q⁢ζ/4⁢π)subscript𝐴𝛼˙𝛼2subscript𝑜𝛼subscript0˙𝛼𝑞𝜁4𝜋A_{\alpha{\dot{\alpha}}}=-2\hskip 1.00006pto_{\alpha}\partial_{0{\dot{\alpha}}% }(\hskip 0.50003pt{q\zeta/4\pi}\hskip 0.50003pt)italic_A start_POSTSUBSCRIPT italic_α over˙ start_ARG italic_α end_ARG end_POSTSUBSCRIPT = - 2 italic_o start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT 0 over˙ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ( italic_q italic_ζ / 4 italic_π ) and hα⁢α˙⁢β⁢β˙=4⁢oα⁢oβ⁢∂0⁢α˙∂0⁢β˙(m⁢(2⁢r+z)⁢ζ2/24⁢π)subscriptℎ𝛼˙𝛼𝛽˙𝛽4subscript𝑜𝛼subscript𝑜𝛽subscript0˙𝛼subscript0˙𝛽𝑚2𝑟𝑧superscript𝜁224𝜋h_{\smash{\alpha{\dot{\alpha}}\beta{\dot{\beta}}}\vphantom{\beta}}=4\hskip 1.0% 0006pto_{\alpha}o_{\beta}\hskip 1.00006pt\partial_{\smash{0{\dot{\alpha}}}% \vphantom{\beta}}\partial_{\smash{0{\dot{\beta}}}\vphantom{\beta}}(\hskip 0.50% 003pt{m(2r{\,+\,}z)\hskip 1.00006pt\zeta^{2}/24\pi}\hskip 0.50003pt)italic_h start_POSTSUBSCRIPT italic_α over˙ start_ARG italic_α end_ARG italic_β over˙ start_ARG italic_β end_ARG end_POSTSUBSCRIPT = 4 italic_o start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_o start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT 0 over˙ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT 0 over˙ start_ARG italic_β end_ARG end_POSTSUBSCRIPT ( italic_m ( 2 italic_r + italic_z ) italic_ζ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 24 italic_π ). Incorporating the nonabelian color structure seems to not solve the puzzle: as a diagnosis one can check whether the color Killing vector equation [143] in the single copy configuration is mapped to the Killing equation for gravity, but this turns out to be not the case. There is a difference in how the mass dimension increases by one when the gauge potential is mapped to the graviton field, between the self-dual double copy construction of the Eguchi-Hanson instanton in Ref. [7] and the double copy constructions of Taub-NUT instanton presented here. The former keeps the “matter coupling” (denoted λ𝜆\lambdaitalic_λ in Ref. [7]) the same while k^α˙=∂0⁢α˙subscript^𝑘˙𝛼subscript0˙𝛼\smash{\hat{k}}_{\dot{\alpha}}=\partial_{0{\dot{\alpha}}}over^ start_ARG italic_k end_ARG start_POSTSUBSCRIPT over˙ start_ARG italic_α end_ARG end_POSTSUBSCRIPT = ∂ start_POSTSUBSCRIPT 0 over˙ start_ARG italic_α end_ARG end_POSTSUBSCRIPT imparts a mass dimension. However, the latter imparts the mass dimension by changing the matter coupling from q𝑞qitalic_q to m𝑚mitalic_m.
  110. T. Eguchi and A. J. Hanson, “Asymptotically flat selfdual solutions to euclidean gravity,” Phys. Lett. B 74 (1978) 249–251.
  111. T. Eguchi and A. J. Hanson, “Selfdual solutions to euclidean gravity,” Annals Phys. 120 (1979) 82.
  112. T. Eguchi and A. J. Hanson, “Gravitational instantons,” Gen. Rel. Grav. 11 (1979) 315–320.
  113. We thank Andres Luna for suggesting this direction.
  114. J.-H. Kim, “Spinning black holes and the Dirac string.” To appear.
  115. S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations,” Astrophys. J. 185 (1973) 635–647.
  116. W. H. Press and S. A. Teukolsky, “Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric,” Astrophys. J. 185 (1973) 649–674.
  117. M. Sasaki and H. Tagoshi, “Analytic black hole perturbation approach to gravitational radiation,” Living Rev. Rel. 6 (2003) 6, arXiv:gr-qc/0306120.
  118. S. Mano, H. Suzuki, and E. Takasugi, “Analytic solutions of the Teukolsky equation and their low frequency expansions,” Prog. Theor. Phys. 95 (1996) 1079–1096, arXiv:gr-qc/9603020.
  119. G. Bonelli, C. Iossa, D. P. Lichtig, and A. Tanzini, “Exact solution of Kerr black hole perturbations via CFT2 and instanton counting: Greybody factor, quasinormal modes, and Love numbers,” Phys. Rev. D 105 no. 4, (2022) 044047, arXiv:2105.04483 [hep-th].
  120. E. Poisson, A. Pound, and I. Vega, “The Motion of point particles in curved spacetime,” Living Rev. Rel. 14 (2011) 7, arXiv:1102.0529 [gr-qc].
  121. B. S. DeWitt and R. W. Brehme, “Radiation damping in a gravitational field,” Annals Phys. 9 (1960) 220–259.
  122. L. Barack and A. Ori, “Mode sum regularization approach for the selfforce in black hole space-time,” Phys. Rev. D 61 (2000) 061502, arXiv:gr-qc/9912010.
  123. E. T. Newman, “Maxwell’s equations and complex Minkowski space,” J. Math. Phys. 14 (1973) 102–103.
  124. E. T. Newman, “On a classical, geometric origin of magnetic moments, spin angular momentum and the Dirac gyromagnetic ratio,” Phys. Rev. D 65 (2002) 104005, arXiv:gr-qc/0201055.
  125. T. Adamo and E. T. Newman, “The Kerr-Newman metric: a review,” arXiv preprint arXiv:1410.6626 (2014) .
  126. D. J. Gross and M. J. Perry, “Magnetic Monopoles in Kaluza-Klein Theories,” Nucl. Phys. B 226 (1983) 29–48.
  127. A. M. Ghezelbash, R. B. Mann, and R. D. Sorkin, “The Disjointed thermodynamics of rotating black holes with a NUT twist,” Nucl. Phys. B 775 (2007) 95–119, arXiv:hep-th/0703030.
  128. P. Fiziev and H. Kleinert, “New action principle for classical particle trajectories in spaces with torsion,” EPL 35 (1996) 241–246, arXiv:hep-th/9503074.
  129. H. Kleinert and A. Pelster, “Autoparallels From a New Action Principle,” Gen. Rel. Grav. 31 (1999) 1439, arXiv:gr-qc/9605028.
  130. World Scientific, 2008.
  131. J.-H. Kim, “Asymptotic Spinspacetime,” arXiv:2309.11886 [hep-th].
  132. J. N. Goldberg and Sachs, “A theorem on Petrov types,” Acta Physica Polonica B, Proceedings Supplement 22 (1962) 13.
  133. E. Newman and R. Penrose, “An approach to gravitational radiation by a method of spin coefficients,” Journal of Mathematical Physics 3 no. 3, (1962) 566–578.
  134. D. J. Griffiths, Introduction to electrodynamics; 3rd ed. Prentice-Hall, Upper Saddle River, NJ, 1999. Chapter 6. Magnetic Fields in Matter.
  135. Z. Xu, D.-H. Zhang, and L. Chang, “Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories,” Nucl. Phys. B 291 (1987) 392–428.
  136. H. K. Dreiner, H. E. Haber, and S. P. Martin, “Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry,” Phys. Rept. 494 (2010) 1–196, arXiv:0812.1594 [hep-ph].
  137. M. J. Duff, “Quantum Tree Graphs and the Schwarzschild Solution,” Phys. Rev. D 7 (1973) 2317–2326.
  138. R. Monteiro, “No U(1) ’electric-magnetic’ duality in Einstein gravity,” arXiv:2312.02351 [hep-th].
  139. U. Kol and S.-T. Yau, “Duality in Gauge Theory, Gravity and String Theory,” arXiv:2311.07934 [hep-th].
  140. L. F. Abbott and S. Deser, “Charge definition in non-abelian gauge theories,” Physics Letters B 116 no. 4, (1982) 259–263.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com