Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tackling Distribution Shifts in Task-Oriented Communication with Information Bottleneck (2405.09514v1)

Published 15 May 2024 in eess.SP, cs.IT, cs.LG, and math.IT

Abstract: Task-oriented communication aims to extract and transmit task-relevant information to significantly reduce the communication overhead and transmission latency. However, the unpredictable distribution shifts between training and test data, including domain shift and semantic shift, can dramatically undermine the system performance. In order to tackle these challenges, it is crucial to ensure that the encoded features can generalize to domain-shifted data and detect semanticshifted data, while remaining compact for transmission. In this paper, we propose a novel approach based on the information bottleneck (IB) principle and invariant risk minimization (IRM) framework. The proposed method aims to extract compact and informative features that possess high capability for effective domain-shift generalization and accurate semantic-shift detection without any knowledge of the test data during training. Specifically, we propose an invariant feature encoding approach based on the IB principle and IRM framework for domainshift generalization, which aims to find the causal relationship between the input data and task result by minimizing the complexity and domain dependence of the encoded feature. Furthermore, we enhance the task-oriented communication with the label-dependent feature encoding approach for semanticshift detection which achieves joint gains in IB optimization and detection performance. To avoid the intractable computation of the IB-based objective, we leverage variational approximation to derive a tractable upper bound for optimization. Extensive simulation results on image classification tasks demonstrate that the proposed scheme outperforms state-of-the-art approaches and achieves a better rate-distortion tradeoff.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. H. Li, W. Yu, H. He, J. Shao, S. Song, J. Zhang, and K. B. Letaief, “Task-oriented communication with out-of-distribution detection: An information bottleneck framework,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Kuala Lumpur, Malaysia, Dec. 2023.
  2. K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. Zhang, “The roadmap to 6G: AI empowered wireless networks,” IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019.
  3. T. O’shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575, Dec. 2017.
  4. H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for MIMO detection,” IEEE Trans. Signal Process., vol. 68, pp. 1702–1715, Feb. 2020.
  5. H. He, R. Wang, W. Jin, S. Jin, C.-K. Wen, and G. Y. Li, “Beamspace channel estimation for wideband millimeter-wave MIMO: A model-driven unsupervised learning approach,” IEEE Trans. Wireless Commun., vol. 22, no. 3, pp. 1808–1822, Mar. 2023.
  6. W. Yu, Y. Shen, H. He, X. Yu, S. Song, J. Zhang, and K. B. Letaief, “An adaptive and robust deep learning framework for THz ultra-massive MIMO channel estimation,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 4, pp. 761–776, Jul. 2023.
  7. E. Bourtsoulatze, D. Burth Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 567–579, May 2019.
  8. Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Graph neural networks for scalable radio resource management: Architecture design and theoretical analysis,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 101–115, Jan. 2021.
  9. G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an intelligent edge: wireless communication meets machine learning,” IEEE Commun. Mag., vol. 58, no. 1, pp. 19–25, Jan. 2020.
  10. Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-efficient edge AI: Algorithms and systems,” IEEE Commun. Surv. Tut., vol. 22, no. 4, pp. 2167–2191, Jul. 2020.
  11. J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication for edge inference: An information bottleneck approach,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 197–211, Jan. 2022.
  12. M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Wireless image retrieval at the edge,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 89–100, Jan. 2020.
  13. S. Yao, K. Niu, S. Wang, and J. Dai, “Semantic coding for text transmission: An iterative design,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 4, pp. 1594–1603, Dec. 2022.
  14. P. Jiang, C.-K. Wen, S. Jin, and G. Y. Li, “Wireless semantic communications for video conferencing,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 230–244, Jan. 2022.
  15. Z. Weng and Z. Qin, “Semantic communication systems for speech transmission,” IEEE J. on Sel. Areas in Commun., vol. 39, no. 8, pp. 2434–2444, Aug. 2021.
  16. G. Zhang, Q. Hu, Z. Qin, Y. Cai, G. Yu, and X. Tao, “A unified multi-task semantic communication system for multimodal data,” IEEE Trans. Commun., Feb. 2024.
  17. H. Xie, Z. Qin, X. Tao, and K. B. Letaief, “Task-oriented multi-user semantic communications,” IEEE J. on Sel. Areas in Commun., vol. 40, no. 9, pp. 2584–2597, Jul. 2022.
  18. J. Shao and J. Zhang, “Bottlenet++: An end-to-end approach for feature compression in device-edge co-inference systems,” in Proc. Int. Conf. Commun. Workshop, Dublin, Ireland, Jun. 2020, pp. 1–6.
  19. N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” in Proc. Annu. Allerton Conf. Commun. Control Comput., Monticello, IL, USA, Oct. 1999, pp. 368–377.
  20. I. E. Aguerri and A. Zaidi, “Distributed variational representation learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 120–138, Jul. 2019.
  21. J. Shao, Y. Mao, and J. Zhang, “Task-oriented communication for multidevice cooperative edge inference,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 73–87, Jul. 2022.
  22. J. Shao, X. Zhang, and J. Zhang, “Task-oriented communication for edge video analytics,” IEEE Trans. Wireless Commun., Sep. 2023.
  23. S. Xie, S. Ma, M. Ding, Y. Shi, M. Tang, and Y. Wu, “Robust information bottleneck for task-oriented communication with digital modulation,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2577–2591, Jun. 2023.
  24. S. Xie, H. He, H. Li, S. Song, J. Zhang, Y.-J. A. Zhang, and K. B. Letaief, “Deep learning-based adaptive joint source-channel coding using hypernetworks,” arXiv preprint arXiv:2401.11155, 2024.
  25. J. Xu, B. Ai, W. Chen, A. Yang, P. Sun, and M. Rodrigues, “Wireless image transmission using deep source channel coding with attention modules,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 4, pp. 2315–2328, May 2021.
  26. H. Wu, Y. Shao, C. Bian, K. Mikolajczyk, and D. Gündüz, “Vision transformer for adaptive image transmission over MIMO channels,” in Proc. IEEE Int. Conf. Commun., Rome, Italy, May-Jun. 2023.
  27. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, Long Beach, CA, USA, Dec. 2017.
  28. J. Dai, S. Wang, K. Yang, K. Tan, X. Qin, Z. Si, K. Niu, and P. Zhang, “Toward adaptive semantic communications: Efficient data transmission via online learned nonlinear transform source-channel coding,” IEEE J. Sel. Areas in Commun., Aug. 2023.
  29. H. Zhang, S. Shao, M. Tao, X. Bi, and K. B. Letaief, “Deep learning-enabled semantic communication systems with task-unaware transmitter and dynamic data,” IEEE J. Sel. Areas in Commun., vol. 41, no. 1, pp. 170–185, Nov. 2022.
  30. L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods for GANs do actually converge?” in Proc. Int. Conf. Mach. Learn.   Vienna, Austria: PMLR, Jul. 2018, pp. 3481–3490.
  31. S. Dörner, S. Cammerer, J. Hoydis, and S. Brink, “Deep learning based communication over the air,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 132–143, Feb. 2018.
  32. J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution detection: A survey,” arXiv preprint arXiv:2110.11334, 2021.
  33. M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk minimization,” arXiv preprint arXiv:1907.02893, 2019.
  34. B. Li, Y. Shen, Y. Wang, W. Zhu, D. Li, K. Keutzer, and H. Zhao, “Invariant information bottleneck for domain generalization,” in Proc. AAAI Conf. Artif. Intell., vol. 36, no. 7, Vancouver, Canada, Feb. 2022, pp. 7399–7407.
  35. F. Farnia and D. Tse, “A minimax approach to supervised learning,” Proc. Conf. Neural Inf. Process. Syst., vol. 29, pp. 4240–4248, Dec. 2016.
  36. F. Huszár. Invariant risk minimization: An information theoretic view. [Online]. Available: https://www.inference.vc/invariant-risk-minimization/
  37. R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and Y. Bengio, “Learning deep representations by mutual information estimation and maximization,” in Proc. Int. Conf. Learn. Represent., New Orleans, LA, USA, May 2019, pp. 1–24.
  38. A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information bottleneck,” in Proc. Int. Conf. Learn. Represent., Toulon, France, Apr. 2017.
  39. X. Sun, Z. Yang, C. Zhang, K.-V. Ling, and G. Peng, “Conditional gaussian distribution learning for open set recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Seattle, WA, USA, Jun. 2020, pp. 13 480–13 489.
  40. O. Dinari and O. Freifeld, “Variational-and metric-based deep latent space for out-of-distribution detection,” in Proc. Conf. Uncertainty Artif. Intell., Eindhoven, Netherlands, Aug. 2022, pp. 569–578.
  41. F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition and clustering,” in Proc. IEEE/CVF Conf.Comput. Vis. Pattern Recognit., Boston, MA, USA, Jun. 2015, pp. 815–823.
  42. F. Ahmed, Y. Bengio, H. Van Seijen, and A. Courville, “Systematic generalisation with group invariant predictions,” in Proc. Int. Conf. Learn. Represent., Addis Ababa, Ethiopia, Apr. 2020, pp. 1–19.
  43. L. Wang, S. Guo, W. Huang, Y. Xiong, and Y. Qiao, “Knowledge guided disambiguation for large-scale scene classification with multi-resolution cnns,” IEEE Trans. Image Process., vol. 26, no. 4, pp. 2055–2068, Apr. 2017.
  44. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Miami, FL, USA, Jun. 2009, pp. 248–255.
  45. Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detecting out-of-distribution image without learning from out-of-distribution data,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Seattle, WA, USA, Jun. 2020, pp. 10 951–10 960.
  46. I. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,” Proc. Int. Conf. Learn. Represent., pp. 1–9, Apr. 2020.
  47. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proc. IEEE Int. Conf. Comput. Vis., Venice, Italy, Oct. 2017, pp. 2223–2232.
  48. B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, Jun. 2016, pp. 2921–2929.
  49. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009. [Online]. Available: https://www.cs.toronto.edu/∼similar-to\sim∼kriz/learning-features-2009-TR.pdf.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Hongru Li (11 papers)
  2. Jiawei Shao (44 papers)
  3. Hengtao He (43 papers)
  4. Shenghui Song (64 papers)
  5. Jun Zhang (1008 papers)
  6. Khaled B. Letaief (209 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com