Scalable Scheduling Policies for Quantum Satellite Networks (2405.09464v1)
Abstract: As Low Earth Orbit (LEO) satellite mega constellations continue to be deployed for satellite internet and recent successful experiments in satellite-based quantum entanglement distribution emerge, a natural question arises: How should we coordinate transmissions and design scalable scheduling policies for a quantum satellite internet? In this work, we consider the problem of transmission scheduling in quantum satellite networks subject to resource constraints at the satellites and ground stations. We show that the most general problem of assigning satellites to ground station pairs for entanglement distribution is NP-hard. We then propose four heuristic algorithms and evaluate their performance for Starlink mega constellation under various amount of resources and placements of the ground stations. We find that the maximum number of receivers necessary per ground station grows very slowly with the total number of deployed ground stations. Our proposed algorithms, leveraging optimal weighted b-matching and the global greedy heuristic, outperform others in entanglement distribution rate, entanglement fidelity, and handover cost metrics. While we develop these scheduling algorithms, we have also designed a software system to simulate, visualize, and evaluate satellite mega-constellations for entanglement distribution.
- A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, Aug 1991. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.67.661
- C. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Reviews of Modern Physics, vol. 89, no. 3, jul 2017. [Online]. Available: https://doi.org/10.1103%2Frevmodphys.89.035002
- X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature, vol. 489, no. 7415, pp. 269–273, sep 2012. [Online]. Available: https://doi.org/10.1038%2Fnature11472
- S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental limits of repeaterless quantum communications,” Nature Communications, vol. 8, no. 1, apr 2017. [Online]. Available: https://doi.org/10.1038%2Fncomms15043
- W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Physical Review A, vol. 59, no. 1, pp. 169–181, jan 1999. [Online]. Available: https://doi.org/10.1103%2Fphysreva.59.169
- N. K. Panigrahy, P. Dhara, D. Towsley, S. Guha, and L. Tassiulas, “Optimal entanglement distribution using satellite based quantum networks,” 2022.
- C. Y. Lu, Y. Cao, C. Z. Peng, and J. W. Pan, “Micius quantum experiments in space,” Reviews of Modern Physics, vol. 94, no. 3, 2022.
- M. Gündoğan, J. S. Sidhu, V. Henderson, L. Mazzarella, J. Wolters, D. K. Oi, and M. Krutzik, “Proposal for space-borne quantum memories for global quantum networking,” npj Quantum Information, vol. 7, no. 1, pp. 1–11, 2021.
- L. de Forges de Parny, O. Alibart, J. Debaud, S. Gressani, A. Lagarrigue, A. Martin, A. Metrat, M. Schiavon, T. Troisi, E. Diamanti, P. Gélard, E. Kerstel, S. Tanzilli, and M. Van Den Bossche, “Satellite-based quantum information networks: use cases, architecture, and roadmap,” Communications Physics, vol. 6, no. 1, pp. 1–17, 2023.
- S. Khatri, A. J. Brady, R. A. Desporte, M. P. Bart, and J. P. Dowling, “Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet,” npj Quantum Inf, vol. 7, no. 4, 2021.
- N. K. Panigrahy, P. Dhara, D. Towsley, S. Guha, and L. Tassiulas, “Spacex starlink,” 2017.
- A. F. M. O. M. A. AUTHORIZATION, “Spacex starlink,” 2018.
- A. Boyle, “Amazon to offer broadband access from orbit with 3,236 satellite ‘project kuiper’ constellation,” 2019.
- P. Dhara, S. J. Johnson, C. N. Gagatsos, P. G. Kwiat, and S. Guha, “Heralded multiplexed high-efficiency cascaded source of dual-rail entangled photon pairs using spontaneous parametric down-conversion,” Physical Review Applied, vol. 17, no. 3, p. 034071, 2022.
- K. C. Chen, P. Dhara, M. Heuck, Y. Lee, W. Dai, S. Guha, and D. Englund, “Zero-added-loss entangled-photon multiplexing for ground- and space-based quantum networks,” Phys. Rev. Appl., vol. 19, p. 054029, May 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.19.054029
- A. N. Letchford, G. Reinelt, and D. O. Theis, “A faster exact separation algorithm for blossom inequalities,” Proceedings of IPCO, LNCS 3064, pp. 196–205, 2004.
- R. P. Anstee, “A polynomial algorithm for b-matchings: An alternative approach,” InformationProcessing Letters, vol. 24, no. 3, pp. 153–157, 1987.
- C. Youderain, “World cities database,” Jun 2021. [Online]. Available: https://simplemaps.com/data/world-cities
- C. Harney, A. I. Fletcher, and S. Pirandola, “End-To-End Capacities of Hybrid Quantum Networks,” Physical Review Applied, vol. 18, no. 1, p. 1, 2022. [Online]. Available: https://doi.org/10.1103/PhysRevApplied.18.014012
- B. Rhodes, Jun 2021. [Online]. Available: https://rhodesmill.org/pyephem/index.html
- J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.
- A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and function using networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.
- C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2
- T. Karin, “toddkarin/global-land-mask: Release of version 1.0.0,” Oct 2020.