Quantum droplets in two-dimensional Bose mixtures at finite temperature (2405.09368v2)
Abstract: We investigate the formation of quantum droplets at finite temperature in attractive Bose mixtures subject to a strong transverse harmonic confinement. By means of exact path-integral Monte Carlo methods we determine the equilibrium density of the gas and the liquid as well as the pressure vs. volume dependence along isothermal curves. Results for the equation of state and for the gas-liquid coexistence region in quasi-2D configurations are compared with calculations in strictly two dimensions, finding excellent agreement. Within the pure 2D model we explore the relevance of the quantum scale anomaly and we determine the critical interaction strength for the occurrence of the first-order gas to liquid transition. Furthermore, we find that the superfluid response develops suddenly, following the density jump from the gas to the liquid state.
- D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose-Bose mixture, Phys. Rev. Lett. 115, 155302 (2015).
- G. Spada, S. Pilati, and S. Giorgini, Attractive solution of binary Bose mixtures: Liquid-vapor coexistence and critical point, Phys. Rev. Lett. 131, 173404 (2023).
- D. T. Son, M. Stephanov, and H.-U. Yee, The phase diagram of ultra quantum liquids, J. Stat. Mech. 2021, 013105 (2021).
- D. S. Petrov and G. E. Astrakharchik, Ultradilute low-dimensional liquids, Phys. Rev. Lett. 117, 100401 (2016).
- N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17, 1307 (1966).
- P. C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev. 158, 383 (1967).
- V. L. Berezinsky, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems., Sov. Phys. JETP 34, 610 (1972).
- J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C Solid State Physics 6, 1181 (1973).
- M. Boninsegni, N. Prokof’ev, and B. Svistunov, Worm algorithm for continuous-space path integral Monte Carlo simulations, Phys. Rev. Lett. 96, 070601 (2006).
- G. Spada, S. Giorgini, and S. Pilati, Path-integral Monte Carlo worm algorithm for Bose systems with periodic boundary conditions, Condens. Matter 7, 30 (2022).
- P. Krüger, Z. Hadzibabic, and J. Dalibard, Critical point of an interacting two-dimensional atomic Bose gas, Phys. Rev. Lett. 99, 040402 (2007).
- I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
- D. S. Petrov and G. V. Shlyapnikov, Interatomic collisions in a tightly confined Bose gas, Phys. Rev. A 64, 012706 (2001).
- L. Pricoupenko and M. Olshanii, Stability of two-dimensional Bose gases in the resonant regime, Journal of Physics B Atomic Molecular Physics 40, 2065 (2007), arXiv:cond-mat/0205210 [cond-mat] .
- D. M. Ceperley, Path integrals in the theory of condensed helium, Rev. Mod. Phys. 67, 279 (1995).
- R. Gautier, H. Yao, and L. Sanchez-Palencia, Strongly interacting bosons in a two-dimensional quasicrystal lattice, Phys. Rev. Lett. 126, 110401 (2021).
- K. Huang, Statistical mechanics (John Wiley & Sons, 2008).
- E. L. Pollock and D. M. Ceperley, Path-integral computation of superfluid densities, Phys. Rev. B 36, 8343 (1987).
- D. M. Ceperley and E. L. Pollock, Path-integral simulation of the superfluid transition in two-dimensional He4superscriptHe4{}^{4}\mathrm{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He, Phys. Rev. B 39, 2084 (1989).
- N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Critical point of a weakly interacting two-dimensional Bose gas, Phys. Rev. Lett. 87, 270402 (2001).