Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient WENO schemes for nonuniform grids (2405.09367v1)

Published 15 May 2024 in math.NA and cs.NA

Abstract: A set of arbitrarily high-order WENO schemes for reconstructions on nonuniform grids is presented. These non-linear interpolation methods use simple smoothness indicators with a linear cost with respect to the order, making them easy to implement and computationally efficient. The theoretical analysis to verify the accuracy and the essentially non-oscillatory properties are presented together with some numerical experiments involving algebraic problems in order to validate them. Also, these general schemes are applied for the solution of conservation laws and hyperbolic systems in the context of finite volume methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. SIAM J. Numer. Anal., 58(6), 3448–3474 (2020).
  2. App. Math. Comput. 403, 126131 (2021).
  3. SIAM J. Numer. Anal. 49(2), 893–915 (2011).
  4. J. Sci. Comput., 43(2), 158–182 (2010).
  5. J. Sci. Comput. 60(3), 641–659 (2014).
  6. J. Sci. Comput. 69(2), 170–200 (2016).
  7. J. Sci. Comput. 78, 499–530 (2019).
  8. SIAM J. Num. Anal. 57(6), 2760–2784 (2019).
  9. SIAM J. Sci. Comput. 42, A1028–A1051 (2020).
  10. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227, 6, 3191–3211 (2008).
  11. PJ. Sci. Comput., 80, 1240–1263 (2019).
  12. SIAM J. Sci. Comput., 27 1071–-1091 (2005).
  13. J. Comput. Phys. 54, 115–173 (1984).
  14. J. Sci. Comput. 67, 1219–1246 (2015).
  15. J. Comput. Phys. 125, 42–58 (1996).
  16. J. Comput. Phys. 71(2), 231–303 (1987).
  17. J. Comput. Phys., 207(2), 542–567, (2005).
  18. Holoborodko, P.: MPFR C++. http://www.holoborodko.com/pavel/mpfr/
  19. J. Comput. Phys. 126, 202–228 (1996).
  20. In: Ehrhardt, M., Günther, M. (eds) Progress in Industrial Mathematics at ECMI 2021. ECMI 2021. Mathematics in Industry(), vol 39. Springer, Cham. (2022).
  21. ESAIM: Mathematical Modelling and Numerical Analysis 33(3), 547–571 (1999).
  22. J. Comput. Phys. 115(1), 200–212 (1994).
  23. The GNU MPFR library. http://www.mpfr.org/
  24. J. Comput. Phys. 237, 151–176 (2013).
  25. J. Comput. Phys., 175, 108-–127 (2002).
  26. J. Comput. Phys. 77, 439–471 (1988).
  27. J. Comput. Phys. 83(1), 32–78 (1989).
  28. (CVGIP:GMIP), 59, 278–-301 (1997).
  29. J. Comput. Phys. 228(11), 4248–4272 (2009).
  30. J. Sci. Comput. 71(1), 246–273 (2017).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com