Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A first look into Utiq: Next-generation cookies at the ISP level (2405.09205v1)

Published 15 May 2024 in cs.CR and cs.NI

Abstract: Online privacy has become increasingly important in recent years. While third-party cookies have been widely used for years, they have also been criticized for their potential impact on user privacy. They can be used by advertisers to track users across multiple sites, allowing them to build detailed profiles of their behavior and interests. However, nowadays, many browsers allow users to block third-party cookies, which limits their usefulness for advertisers. In this paper, we take a first look at Utiq, a new way of user tracking performed directly by the ISP, to substitute the third-party cookies used until now. We study the main properties of this new identification methodology and their adoption on the 10K most popular websites. Our results show that, although still marginal due to the restrictions imposed by the system, between 0.7% and 1.2% of websites already include Utiq as one of their user identification methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. M. Wood, “Today’s Firefox blocks third-party tracking cookies and cryptomining by default,” 2019. https://blog.mozilla.org/products/firefox/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/.
  2. J. Wilander, “Full third-party cookie blocking and more,” Mar. 2020. https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/.
  3. T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros, “A Survey on Web Tracking: Mechanisms, Implications, and Defenses,” Proceedings of the IEEE, vol. 105, pp. 1476–1510, Aug. 2017.
  4. P. Leon, B. Ur, R. Shay, Y. Wang, R. Balebako, and L. Cranor, “Why Johnny can’t opt out: a usability evaluation of tools to limit online behavioral advertising,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, (New York, NY, USA), pp. 589–598, Association for Computing Machinery, May 2012.
  5. S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer, A. Narayanan, and E. W. Felten, “Cookies That Give You Away: The Surveillance Implications of Web Tracking,” in Proceedings of the 24th International Conference on World Wide Web, WWW ’15, (Republic and Canton of Geneva, CHE), pp. 289–299, International World Wide Web Conferences Steering Committee, May 2015.
  6. P. Papadopoulos, N. Kourtellis, and E. Markatos, “Cookie Synchronization: Everything You Always Wanted to Know But Were Afraid to Ask,” in The World Wide Web Conference, WWW ’19, (New York, NY, USA), pp. 1432–1442, Association for Computing Machinery, May 2019.
  7. “General Data Protection Regulation (2018),” May 2022. https://gdpr.eu/.
  8. A. Chavez, “The next step toward phasing out third-party cookies in chrome,” Mar. 2024. https://blog.google/products/chrome/privacy-sandbox-tracking-protection/.
  9. N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna, “Cookieless Monster: Exploring the Ecosystem of Web-Based Device Fingerprinting,” in 2013 IEEE Symposium on Security and Privacy, pp. 541–555, May 2013.
  10. S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site Measurement and Analysis,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, (New York, NY, USA), pp. 1388–1401, Association for Computing Machinery, Oct. 2016.
  11. I. Castell-Uroz, J. Solé-Pareta, and P. Barlet-Ros, “TrackSign: Guided Web Tracking Discovery,” in IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, pp. 1–10, May 2021.
  12. U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq, “AdGraph: A Graph-Based Approach to Ad and Tracker Blocking,” in 2020 IEEE Symposium on Security and Privacy (SP), pp. 763–776, May 2020.
  13. Q. Wu, Q. Liu, Y. Zhang, P. Liu, and G. Wen, “A Machine Learning Approach for Detecting Third-Party Trackers on the Web,” in Computer Security – ESORICS 2016 (I. Askoxylakis, S. Ioannidis, S. Katsikas, and C. Meadows, eds.), Lecture Notes in Computer Science, (Cham), pp. 238–258, Springer International Publishing, 2016.
  14. G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and B. Preneel, “FPDetective: dusting the web for fingerprinters,” in Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, CCS ’13, (New York, NY, USA), pp. 1129–1140, Association for Computing Machinery, Nov. 2013.
  15. V. Kalavri, J. Blackburn, M. Varvello, and K. Papagiannaki, “Like a Pack of Wolves: Community Structure of Web Trackers,” in Passive and Active Measurement (T. Karagiannis and X. Dimitropoulos, eds.), Lecture Notes in Computer Science, (Cham), pp. 42–54, Springer International Publishing, 2016.
  16. H. Le, F. Fallace, and P. Barlet-Ros, “Towards accurate detection of obfuscated web tracking,” in 2017 IEEE International Workshop on Measurement and Networking (M&N), pp. 1–6, Sept. 2017.
  17. M. Ikram, H. J. Asghar, M. A. Kaafar, B. Krishnamurthy, and A. Mahanti, “Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning,” Mar. 2016.
  18. T.-C. Li, H. Hang, M. Faloutsos, and P. Efstathopoulos, “TrackAdvisor: Taking Back Browsing Privacy from Third-Party Trackers,” in Passive and Active Measurement (J. Mirkovic and Y. Liu, eds.), Lecture Notes in Computer Science, (Cham), pp. 277–289, Springer International Publishing, 2015.
  19. Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol, “Tracking the Trackers,” in Proceedings of the 25th International Conference on World Wide Web, WWW ’16, (Republic and Canton of Geneva, CHE), pp. 121–132, International World Wide Web Conferences Steering Committee, Apr. 2016.
  20. H. Metwalley, S. Traverso, and M. Mellia, “Unsupervised Detection of Web Trackers,” in 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, Dec. 2015.
  21. D. Gugelmann, M. Happe, B. Ager, and V. Lenders, “An Automated Approach for Complementing Ad Blockers’ Blacklists,” Proceedings on Privacy Enhancing Technologies, 2015.
  22. I. Castell-Uroz, K. Fukuda, and P. Barlet-Ros, “ASTrack: Automatic Detection and Removal of Web Tracking Code with Minimal Functionality Loss,” in IEEE INFOCOM 2023 - IEEE Conference on Computer Communications, pp. 1–10, May 2023.
  23. U. SA/NV, “Towards a trusted and responsible digital world for everyone,” Aug. 2023. https://utiq.com.
  24. “AdForm,” Mar. 2024. https://site.adform.com/.
  25. V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen, “Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manipulation,” arXiv.org, June 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

HackerNews

  1. Utiq: Cookies at the ISP Level (2 points, 0 comments)