Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monte Carlo methods on compact complex manifolds using Bergman kernels (2405.09203v1)

Published 15 May 2024 in math.CV, cs.NA, math.NA, and math.PR

Abstract: In this paper, we propose a new randomized method for numerical integration on a compact complex manifold with respect to a continuous volume form. Taking for quadrature nodes a suitable determinantal point process, we build an unbiased Monte Carlo estimator of the integral of any Lipschitz function, and show that the estimator satisfies a central limit theorem, with a faster rate than under independent sampling. In particular, seeing a complex manifold of dimension $d$ as a real manifold of dimension $d_{\mathbb{R}}=2d$, the mean squared error for $N$ quadrature nodes decays as $N{-1-2/d_{\mathbb{R}}}$; this is faster than previous DPP-based quadratures and reaches the optimal worst-case rate investigated by [Bakhvalov 1965] in Euclidean spaces. The determinantal point process we use is characterized by its kernel, which is the Bergman kernel of a holomorphic Hermitian line bundle, and we strongly build upon the work of Berman that led to the central limit theorem in [Berman, 2018].We provide numerical illustrations for the Riemann sphere.

Summary

We haven't generated a summary for this paper yet.