Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a universal QAOA protocol: Evidence of a scaling advantage in solving some combinatorial optimization problems (2405.09169v2)

Published 15 May 2024 in quant-ph and math.OC

Abstract: The quantum approximate optimization algorithm (QAOA) is a promising algorithm for solving combinatorial optimization problems (COPs). In this algorithm, there are alternating layers consisting of a mixer and a problem Hamiltonian. Each layer $i=0,\ldots,p-1$ is parameterized by $\beta_i$ and $\gamma_i$. How to find these parameters has been an open question with the majority of the research focused on finding them using classical algorithms. In this work, we present evidence that fixed linear ramp schedules constitute a universal set of QAOA parameters, i.e., a set of $\gamma$ and $\beta$ parameters that rapidly approximate the optimal solution, $x*$, independently of the COP selected, and that the success probability of finding it, $probability(x*)$, increases with the number of QAOA layers $p$. We simulate linear ramp QAOA protocols (LR-QAOA) involving up to $N_q=42$ qubits and $p = 400$ layers on random instances of 9 different COPs. The results suggest that $probability(x*) \approx 1/2{(\eta N_q / p)}$ for a constant $\eta$. For example, when implementing LR-QAOA with $p=42$, the $probability(x*)$ for 42-qubit Weighted MaxCut problems (W-MaxCut) increases from $2/2{42}\approx 10{-13}$ to an average of 0.13. We compare LR-QAOA, simulated annealing (SA), and branch-and-bound (B&B) finding a scaling improvement in LR-QAOA. We test LR-QAOA on real hardware using IonQ Aria, Quantinuum H2-1, IBM Brisbane, IBM Kyoto, and IBM Osaka, encoding random weighted MaxCut (W-MaxCut) problems from 5 to 109 qubits and $p=3$ to $100$. Even for the largest case, $N_q=109$ qubits and $p=100$, information about the LR-QAOA optimization protocol is present. The circuit involved requires 21200 CNOT gates. These results show that LR-QAOA effectively finds high-quality solutions for a large variety of COPs and suggest a scaling advantage of quantum computation for combinatorial optimization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. A. Lucas, Frontiers in Physics 2, 1 (2014), arXiv:1302.5843 .
  2. M. Ohzeki, Scientific Reports 10, 1 (2020), arXiv:2002.05298 .
  3. L. Bittel and M. Kliesch, Physical Review Letters 127, 120502 (2021), arXiv:2101.07267 .
  4. D. De Falco and D. Tamascelli, RAIRO - Theoretical Informatics and Applications 45, 99 (2011), arXiv:1107.0794 .
  5. D. Krause, Journal of large-scale research facilities JLSRF 5, A135 (2019).
  6. D. Alvarez, J. of Large-Scale Res. Facil. 7, A183 (2021).
  7. G. Gutin and A. Yeo,  1, 1 (2021), arXiv:2104.05536 .
  8. C. Paradimitriou and M. Yannakakis, Journal of computer and system sciences 43, 425 (1991).
  9. IBM Q team, “Qiskit: An open-source framework for quantum computing,”  (2021), https://doi.org/10.5281/zenodo.2573505, release 0.39.4.
  10. A. Wald and J. Wolfowitz, The Annals of Mathematical Statistics 15, 358 (1944).
  11. “IonQ Aria Quantum System,” https://ionq.com/quantum-systems/aria.
  12. IBM Quantum Blog, “Eagle Quantum Processor,”  (2022).
  13. L. K. Grover, Proceedings of the Annual ACM Symposium on Theory of Computing Part F129452, 212 (1996), arXiv:9605043 [quant-ph] .
  14. J. Wurtz and D. Lykov,   (2021), arXiv:2107.00677 .
  15. J. Hastad, Conference Proceedings of the Annual ACM Symposium on Theory of Computing , 1 (1997).
  16. D. P. Williamson and M. Goemans, Science 42, 1115 (1994).
Citations (5)

Summary

We haven't generated a summary for this paper yet.