Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Image Coding for Humans and Machines Using Feature Fusion Network (2405.09152v5)

Published 15 May 2024 in cs.CV and cs.MM

Abstract: As image recognition models become more prevalent, scalable coding methods for machines and humans gain more importance. Applications of image recognition models include traffic monitoring and farm management. In these use cases, the scalable coding method proves effective because the tasks require occasional image checking by humans. Existing image compression methods for humans and machines meet these requirements to some extent. However, these compression methods are effective solely for specific image recognition models. We propose a learning-based scalable image coding method for humans and machines that is compatible with numerous image recognition models. We combine an image compression model for machines with a compression model, providing additional information to facilitate image decoding for humans. The features in these compression models are fused using a feature fusion network to achieve efficient image compression. Our method's additional information compression model is adjusted to reduce the number of parameters by enabling combinations of features of different sizes in the feature fusion network. Our approach confirms that the feature fusion network efficiently combines image compression models while reducing the number of parameters. Furthermore, we demonstrate the effectiveness of the proposed scalable coding method by evaluating the image compression performance in terms of decoded image quality and bitrate.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Takahiro Shindo (10 papers)
  2. Taiju Watanabe (8 papers)
  3. Yui Tatsumi (7 papers)
  4. Hiroshi Watanabe (92 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.