Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the analyticity of the lightest particle mass of Ising field theory in a magnetic field (2405.09091v1)

Published 15 May 2024 in hep-th and cond-mat.stat-mech

Abstract: We study the scaling functions associated with the lightest particle mass $M_1$ in 2d Ising field theory in external magnetic field. The scaling functions depend on the scaling parameter $\xi = h/|m|{\frac{15}{8}}$, or related parameter $\eta = m / h{\frac{8}{15}}$. Analytic properties of $M_1$ in the high-T domain were discussed in arXiv:2203.11262. In this work, we study analyticity of $M_1$ in the low-T domain. Important feature of this analytic structure is represented by the Fisher-Langer's branch cut. The discontinuity across this branch cut determines the behavior of $M_1$ at all complex $\xi$ via associated low-T dispersion relation. Also, we put forward the "extended analyticity" conjecture for $M_1$ in the complex $\eta$-plane, similar to the analyticity of the free energy density previously proposed in arXiv:hep-th/0112167. The extended analyticity implies the "extended dispersion relation", which we verify against the numerics from the Truncated Free Fermion Approach (TFFSA), giving strong support to the conjecture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. 2D Ising Field Theory in a magnetic field: the Yang-Lee singularity. JHEP, 08:057, 2022.
  2. P Fonseca and A Zamolodchikov. Ising field theory in a magnetic field: analytic properties of the free energy. Journal of statistical physics, 110(3-6):527–590, 2003.
  3. Alexander Zamolodchikov. Ising spectroscopy ii: particles and poles at t> tc. arXiv preprint arXiv:1310.4821, 2013.
  4. Ising Field Theory in a magnetic field: φ3superscript𝜑3\varphi^{3}italic_φ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT coupling at T>Tc𝑇subscript𝑇𝑐T>T_{c}italic_T > italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT. 4 2023.
  5. Corner Transfer Matrix Approach to the Yang-Lee Singularity in the 2D Ising Model in a magnetic field. 8 2023.
  6. Statistical theory of equations of state and phase transitions. i. theory of condensation. Physical Review, 87(3):404, 1952.
  7. Statistical theory of equations of state and phase transitions. ii. lattice gas and ising model. Physical Review, 87(3):410, 1952.
  8. John L Cardy. Conformal invariance and the yang-lee edge singularity in two dimensions. Physical review letters, 54(13):1354, 1985.
  9. The two-dimensional Ising model. Harvard University Press, 2013.
  10. Michael E Fisher. Yang-lee edge singularity and ϕitalic-ϕ\phiitalic_ϕ 3 field theory. Physical Review Letters, 40(25):1610, 1978.
  11. A.B. Zamolodchikov. Two point correlation function in scaling Lee-Yang model. Nucl. Phys. B, 348:619–641, 1991.
  12. John L. Cardy and G. Mussardo. S Matrix of the Yang-Lee Edge Singularity in Two-Dimensions. Phys. Lett., B225:275–278, 1989.
  13. FA Smirnov and AB Zamolodchikov. On space of integrable quantum field theories. Nuclear Physics B, 915:363–383, 2017.
  14. Alexei B. Zamolodchikov. Mass scale in the sine-Gordon model and its reductions. Int. J. Mod. Phys. A, 10:1125–1150, 1995.
  15. A.B. Zamolodchikov. Integrals of Motion and S Matrix of the (Scaled) T=T(c) Ising Model with Magnetic Field. Int. J. Mod. Phys. A, 4:4235, 1989.
  16. V. A. Fateev. The Exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories. Phys. Lett. B, 324:45–51, 1994.
  17. Nonintegrable quantum field theories as perturbations of certain integrable models. Nucl. Phys. B, 473:469–508, 1996.
  18. Expectation values of local fields in Bullough-Dodd model and integrable perturbed conformal field theories. Nucl. Phys. B, 516:652–674, 1998.
  19. Oleg Alekseev. Form factors in the Bullough-Dodd related models: The Ising model in a magnetic field. JETP Lett., 95:201–205, 2012.
  20. Michael E Fisher. The theory of condensation and the critical point. Physics Physique Fizika, 3(5):255, 1967.
  21. James S Langer. Theory of the condensation point. Annals of Physics, 281(1-2):941–990, 2000.
  22. AF Andreev. Singularity of thermodynamic quantities at a first order phase transition point. Sov. Phys. JETP, 18:1415–1416, 1964.
  23. Goldstone modes in vacuum decay and first-order phase transitions. Journal of Physics A: Mathematical and General, 13(5):1755, 1980.
  24. MJ Lowe and DJ Wallace. Instantons and the ising model below tc. Journal of Physics A: Mathematical and General, 13(10):L381, 1980.
  25. CK Harris. The ising model below tc: calculation of nonuniversal amplitudes using a primitive droplet model. Journal of Physics A: Mathematical and General, 17(3):L143, 1984.
  26. M. B. Voloshin. DECAY OF FALSE VACUUM IN (1+1)-DIMENSIONS. Yad. Fiz., 42:1017–1026, 1985.
  27. Spin spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region. Phys. Rev. B, 13:316–374, 1976.
  28. Two-dimensional ising field theory in a magnetic field: Breakup of the cut in the two-point function. Physical Review D, 18(4):1259, 1978.
  29. Gerard ’t Hooft. A Two-Dimensional Model for Mesons. Nucl. Phys. B, 75:461–470, 1974.
  30. Ising spectroscopy. I. Mesons at T <<< T(c). 12 2006.
  31. S. B. Rutkevich. Formfactor perturbation expansions and confinement in the Ising field theory. J. Phys. A, 42:304025, 2009.
  32. Ising spectroscopy i: Mesons at t< t_c. arXiv preprint hep-th/0612304, 2006.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com