Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrated Monostatic Sensing and Full-Duplex Multiuser Communication for mmWave Systems (2405.09079v1)

Published 15 May 2024 in eess.SP, cs.IT, and math.IT

Abstract: In this paper, we propose a hybrid precoding/combining framework for communication-centric integrated sensing and full-duplex (FD) communication operating at mmWave bands. The designed precoders and combiners enable multiuser (MU) FD communication while simultaneously supporting monostatic sensing in a frequency-selective setting. The joint design of precoders and combiners involves the mitigation of self-interference (SI) caused by simultaneous transmission and reception at the FD base station (BS). Additionally, MU interference needs to be handled by the precoder/combiner design. The resulting optimization problem involves non-convex constraints since hybrid analog/digital architectures utilize networks of phase shifters. To solve the proposed problem, we separate the optimization of each precoder/combiner, and design each one of them while fixing the others. The precoders at the FD BS are designed by reformulating the communication and sensing constraints as signal-to-leakage-plus-noise ratio (SLNR) maximization problems that consider SI and MU interference as leakage. Furthermore, we design the frequency-flat analog combiner such that the residual SI at the FD BS is minimized under communication and sensing gain constraints. Finally, we design an interference-aware digital combining stage that separates MU signals and target reflections. The communication performance and sensing results show that the proposed framework efficiently supports both functionalities simultaneously.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, 2022.
  2. N. González-Prelcic, M. F. Keskin, O. Kaltiokallio, M. Valkama, D. Dardari, X. Shen, Y. Shen, M. Bayraktar, and H. Wymeersch, “The integrated sensing and communication revolution for 6G: Vision, techniques, and applications,” Proc. IEEE, 2024.
  3. C. Baquero Barneto, T. Riihonen, M. Turunen, L. Anttila, M. Fleischer, K. Stadius, J. Ryynänen, and M. Valkama, “Full-duplex OFDM radar with LTE and 5G NR waveforms: Challenges, solutions, and measurements,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 10, pp. 4042–4054, 2019.
  4. R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436–453, 2016.
  5. C. B. Barneto, S. D. Liyanaarachchi, M. Heino, T. Riihonen, and M. Valkama, “Full duplex radio/radar technology: The enabler for advanced joint communication and sensing,” IEEE Wireless Commun., vol. 28, no. 1, pp. 82–88, 2021.
  6. B. Smida, R. Wichman, K. E. Kolodziej, H. A. Suraweera, T. Riihonen, and A. Sabharwal, “In-band full-duplex: The physical layer,” Proc. IEEE, pp. 1–30, 2024.
  7. M. F. Keskin, V. Koivunen, and H. Wymeersch, “Limited feedforward waveform design for OFDM dual-functional radar-communications,” IEEE Trans. Signal Process., vol. 69, pp. 2955–2970, 2021.
  8. Z.-M. Jiang, M. Rihan, P. Zhang, L. Huang, Q. Deng, J. Zhang, and E. M. Mohamed, “Intelligent reflecting surface aided dual-function radar and communication system,” IEEE Syst. J., vol. 16, no. 1, pp. 475–486, 2022.
  9. A. Bazzi and M. Chafii, “On outage-based beamforming design for dual-functional radar-communication 6G systems,” IEEE Trans. Wireless Commun., vol. 22, no. 8, pp. 5598–5612, 2023.
  10. I. P. Roberts, J. G. Andrews, H. B. Jain, and S. Vishwanath, “Millimeter-wave full duplex radios: New challenges and techniques,” IEEE Wireless Commun., vol. 28, no. 1, pp. 36–43, 2021.
  11. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.
  12. R. López-Valcarce and N. González-Prelcic, “Analog beamforming for full-duplex millimeter wave communication,” in Proc. 16th Int. Symp. Wireless Commun. Syst. (ISWCS), 2019, pp. 687–691.
  13. K. Satyanarayana, M. El-Hajjar, P.-H. Kuo, A. Mourad, and L. Hanzo, “Hybrid beamforming design for full-duplex millimeter wave communication,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1394–1404, 2019.
  14. J. Palacios, J. Rodriguez-Fernandez, and N. Gonzalez-Prelcic, “Hybrid precoding and combining for full-duplex millimeter wave communication,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2019, pp. 1–6.
  15. R. López-Valcarce and M. Martínez-Cotelo, “Full-duplex mmWave communication with hybrid precoding and combining,” in Proc. 28th Eur. Signal Process. Conf. (EUSIPCO), 2021, pp. 1752–1756.
  16. I. P. Roberts, J. G. Andrews, and S. Vishwanath, “Hybrid beamforming for millimeter wave full-duplex under limited receive dynamic range,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7758–7772, 2021.
  17. A. Koc and T. Le-Ngoc, “Full-duplex mmWave massive MIMO systems: A joint hybrid precoding/combining and self-interference cancellation design,” IEEE Open J. Commun. Soc., vol. 2, pp. 754–774, 2021.
  18. C. K. Sheemar, C. K. Thomas, and D. Slock, “Practical hybrid beamforming for millimeter wave massive MIMO full duplex with limited dynamic range,” IEEE Open J. Commun. Soc., vol. 3, pp. 127–143, 2022.
  19. R. López-Valcarce and M. Martínez-Cotelo, “Full-duplex mmWave MIMO with finite-resolution phase shifters,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 8979–8994, 2022.
  20. S. D. Liyanaarachchi, C. B. Barneto, T. Riihonen, M. Heino, and M. Valkama, “Joint multi-user communication and MIMO radar through full-duplex hybrid beamforming,” in Proc. 1st IEEE Int. Online Symp. Joint Commun. Sensing (JCS), 2021, pp. 1–5.
  21. C. B. Barneto, T. Riihonen, S. D. Liyanaarachchi, M. Heino, N. González-Prelcic, and M. Valkama, “Beamformer design and optimization for joint communication and full-duplex sensing at mm-Waves,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8298–8312, 2022.
  22. M. A. Islam, G. C. Alexandropoulos, and B. Smida, “Integrated sensing and communication with millimeter wave full duplex hybrid beamforming,” in Proc. IEEE Int. Conf. Commun. (ICC), 2022, pp. 4673–4678.
  23. M. A. Islam, G. C. Alexandropoulos, and B. Smida, “Simultaneous multi-user MIMO communications and multi-target tracking with full duplex radios,” in Proc. IEEE Globecom Workshops (GC Wkshps), 2022, pp. 19–24.
  24. M. Bayraktar, C. Rusu, N. González-Prelcic, and H. Chen, “Self-interference aware codebook design for full-duplex joint sensing and communication systems at mmWave,” in Proc. IEEE 9th Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process. (CAMSAP), 2023, pp. 231–235.
  25. M. Bayraktar, N. González-Prelcic, and H. Chen, “Hybrid precoding and combining for mmWave full-duplex joint radar and communication systems under self-interference,” in Proc. IEEE Int. Conf. Commun. (ICC), 2024, pp. 1–6.
  26. Z. Liu, S. Aditya, H. Li, and B. Clerckx, “Joint transmit and receive beamforming design in full-duplex integrated sensing and communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 9, pp. 2907–2919, 2023.
  27. Z. He, W. Xu, H. Shen, D. W. K. Ng, Y. C. Eldar, and X. You, “Full-duplex communication for ISAC: Joint beamforming and power optimization,” IEEE J. Sel. Areas Commun., vol. 41, no. 9, pp. 2920–2936, 2023.
  28. M. Talha, B. Smida, M. A. Islam, and G. C. Alexandropoulos, “Multi-target two-way integrated sensing and communications with full duplex MIMO radios,” in Proc. 57th Asilomar Conf. Signals, Syst., Comput., 2023, pp. 1661–1667.
  29. A. M. Elbir, K. V. Mishra, S. A. Vorobyov, and R. W. Heath, “Twenty-five years of advances in beamforming: From convex and nonconvex optimization to learning techniques,” IEEE Signal Process. Mag., vol. 40, no. 4, pp. 118–131, 2023.
  30. M. Sadek, A. Tarighat, and A. H. Sayed, “A leakage-based precoding scheme for downlink multi-user MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1711–1721, 2007.
  31. B. Ghojogh, F. Karray, and M. Crowley, “Eigenvalue and generalized eigenvalue problems: Tutorial,” arXiv preprint arXiv:1903.11240, 2019.
  32. J. P. González-Coma, J. Rodríguez-Fernández, N. González-Prelcic, L. Castedo, and R. W. Heath, “Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 353–367, 2018.
  33. J. Rodriguez-Fernández and N. Gonzálcz-Prelcic, “Low-complexity multiuser hybrid precoding and combining for frequency selective millimeter wave systems,” in Proc. IEEE 19th Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC), 2018, pp. 1–5.
  34. D. Zhang, Y. Wang, X. Li, and W. Xiang, “Hybrid beamforming for downlink multiuser millimetre wave MIMO-OFDM systems,” IET Commun., vol. 13, no. 11, pp. 1557–1564, 2019.
  35. Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale optimization problems,” SIAM J. Optim., vol. 22, no. 2, pp. 341–362, 2012.
  36. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” 2014.
  37. S. Aditya, O. Dizdar, B. Clerckx, and X. Li, “Sensing using coded communications signals,” IEEE Open J. Commun. Soc., vol. 4, pp. 134–152, 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com