Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective Optimization-based Transmit Beamforming for Multi-Target and Multi-User MIMO-ISAC Systems (2405.09022v1)

Published 15 May 2024 in eess.SP

Abstract: Integrated sensing and communication (ISAC) is an enabling technology for the sixth-generation mobile communications, which equips the wireless communication networks with sensing capabilities. In this paper, we investigate transmit beamforming design for multiple-input and multiple-output (MIMO)-ISAC systems in scenarios with multiple radar targets and communication users. A general form of multi-target sensing mutual information (MI) is derived, along with its upper bound, which can be interpreted as the sum of individual single-target sensing MI. Additionally, this upper bound can be achieved by suppressing the cross-correlation among reflected signals from different targets, which aligns with the principles of adaptive MIMO radar. Then, we propose a multi-objective optimization framework based on the signal-to-interference-plus-noise ratio of each user and the tight upper bound of sensing MI, introducing the Pareto boundary to characterize the achievable communication-sensing performance boundary of the proposed ISAC system. To achieve the Pareto boundary, the max-min system utility function method is employed, while considering the fairness between communication users and radar targets. Subsequently, the bisection search method is employed to find a specific Pareto optimal solution by solving a series of convex feasible problems. Finally, simulation results validate that the proposed method achieves a better tradeoff between multi-user communication and multi-target sensing performance. Additionally, utilizing the tight upper bound of sensing MI as a performance metric can enhance the multi-target resolution capability and angle estimation accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-the-art, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, Feb. 2020.
  2. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Select. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Mar. 2022.
  3. D. Ma, N. Shlezinger, T. Huang, Y. Liu, and Y. C. Eldar, “Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies,” IEEE Signal Processing Mag., vol. 37, no. 4, pp. 85–97, Jun. 2020.
  4. Z. Feng, Z. Wei, X. Chen, H. Yang, Q. Zhang, and P. Zhang, “Joint communication, sensing, and computation enabled 6G intelligent machine system,” IEEE Network, vol. 35, no. 6, pp. 34–42, Nov. 2021.
  5. X. Li, M. Zhang, H. Chen, C. Han, L. Li, D.-T. Do, S. Mumtaz, and A. Nallanathan, “UAV-enabled multi-pair massive MIMO-NOMA relay systems with low-resolution ADCs/DACs,” IEEE Trans. Veh. Technol., vol. 73, no. 2, pp. 2171–2186, Feb. 2024.
  6. Y. Cheng, J. Du, J. Liu, L. Jin, X. Li, and D. B. da Costa, “Nested tensor-based framework for ISAC assisted by reconfigurable intelligent surface,” IEEE Trans. Veh. Technol., vol. 73, no. 3, pp. 4412–4417, Mar. 2024.
  7. J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing techniques for joint communication and radar sensing,” IEEE J. Sel. Top. Sign. Proces., vol. 15, no. 6, pp. 1295–1315, Sept. 2021.
  8. J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and J. Yuan, “Enabling joint communication and radar sensing in mobile networks—a survey,” IEEE Commun. Surv. Tutor., vol. 24, no. 1, pp. 306–345, Oct. 2022.
  9. X. Fang, W. Feng, Y. Chen, N. Ge, and Y. Zhang, “Joint communication and sensing toward 6G: Models and potential of using MIMO,” IEEE Internet of Things Journal, vol. 10, no. 5, pp. 4093–4116, 2023.
  10. Z. Wang, X. Mu, and Y. Liu, “Near-field integrated sensing and communications,” IEEE Commun. Lett., vol. 27, no. 8, pp. 2048–2052, Aug. 2023.
  11. F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “MU-MIMO communications with MIMO radar: From co-existence to joint transmission,” IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2755–2770, 2018.
  12. X. Liu, T. Huang, and Y. Liu, “Transmit design for joint MIMO radar and multiuser communications with transmit covariance constraint,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1932–1950, Mar. 2022.
  13. X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser MIMO communications and MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, Jun. 2020.
  14. L. Chen, F. Liu, W. Wang, and C. Masouros, “Joint radar-communication transmission: A generalized pareto optimization framework,” IEEE Trans. Signal Process., vol. 69, pp. 2752–2765, 2021.
  15. Z. Ni, J. A. Zhang, K. Yang, X. Huang, and T. A. Tsiftsis, “Multi-metric waveform optimization for multiple-input single-output joint communication and radar sensing,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1276–1289, Dec. 2022.
  16. X. Yuan, Z. Feng, J. A. Zhang, W. Ni, R. P. Liu, Z. Wei, and C. Xu, “Spatio-temporal power optimization for MIMO joint communication and radio sensing systems with training overhead,” IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 514–528, Dec. 2021.
  17. C. Meng, Z. Wei, and Z. Feng, “Adaptive waveform optimization for MIMO integrated sensing and communication systems based on mutual information,” in 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nov. 2022, pp. 472–477.
  18. F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-rao bound optimization for joint radar-communication beamforming,” IEEE Trans. Signal Process., vol. 70, pp. 240–253, 2022.
  19. H. Hua, X. Song, Y. Fang, T. X. Han, and J. Xu, “MIMO integrated sensing and communication with extended target: CRB-rate tradeoff,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Dec. 2022, pp. 4075–4080.
  20. Z. Ren, Y. Peng, X. Song, Y. Fang, L. Qiu, L. Liu, D. W. K. Ng, and J. Xu, “Fundamental crb-rate tradeoff in multi-antenna ISAC systems with information multicasting and multi-target sensing,” IEEE Trans. Wirel. Commun., pp. 1–1, Sept. 2023.
  21. J. Sun, S. Ma, G. Xu, and S. Li, “Trade-off between positioning and communication for millimeter wave systems with Ziv-Zakai bound,” IEEE Trans. Commun., vol. 71, no. 6, pp. 3752–3762, Apr. 2023.
  22. M. Bell, “Information theory and radar waveform design,” IEEE Trans. Inf. Theory, vol. 39, no. 5, pp. 1578–1597, Sep. 1993.
  23. B. Tang and J. Li, “Spectrally constrained MIMO radar waveform design based on mutual information,” IEEE Trans. Signal Process., vol. 67, no. 3, pp. 821–834, Dec. 2019.
  24. Y. Yang and R. S. Blum, “MIMO radar waveform design based on mutual information and minimum mean-square error estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 1, pp. 330–343, 2007.
  25. Y. Chen, Y. Nijsure, C. Yuen, Y. H. Chew, Z. Ding, and S. Boussakta, “Adaptive distributed MIMO radar waveform optimization based on mutual information,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 2, pp. 1374–1385, 2013.
  26. Z. Wei, J. Piao, X. Yuan, H. Wu, J. A. Zhang, Z. Feng, L. Wang, and P. Zhang, “Waveform design for MIMO-OFDM integrated sensing and communication system: An information theoretical approach,” IEEE Trans. Commun., vol. 72, no. 1, pp. 496–509, Jan. 2024.
  27. F. Dong, F. Liu, S. Lu, and Y. Xiong, “Rethinking estimation rate for wireless sensing: A rate-distortion perspective,” IEEE Trans. Veh. Technol., vol. 72, no. 12, pp. 16 876–16 881, Jul. 2023.
  28. J. Li, G. Zhou, T. Gong, and N. Liu, “A framework for mutual information-based MIMO integrated sensing and communication beamforming design,” IEEE Trans. Veh. Technol., pp. 1–15, 2024.
  29. J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal. Process. Mag., vol. 24, no. 5, pp. 106–114, Sept.2007.
  30. D. Sarwate and M. Pursley, “Crosscorrelation properties of pseudorandom and related sequences,” Proc. IEEE, vol. 68, no. 5, pp. 593–619, May 1980.
  31. R. Fritzsche and G. P. Fettweis, “Robust sum rate maximization in the multi-cell MU-MIMO downlink,” in 2013 IEEE Wireless Communications and Networking Conference (WCNC), Jul. 2013, pp. 3180–3184.
  32. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, Jun. 2018.
  33. J. M. F. Moura and Y. Jin, “Time reversal imaging by adaptive interference canceling,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 233–247, Dec. 2008.
  34. Z. Cheng, Z. He, B. Liao, and M. Fang, “MIMO radar waveform design with PAPR and similarity constraints,” IEEE Trans. Signal Process., vol. 66, no. 4, pp. 968–981, Feb, 2018.
  35. N. H. Lehmann, E. Fishler, A. M. Haimovich, R. S. Blum, D. Chizhik, L. J. Cimini, and R. A. Valenzuela, “Evaluation of transmit diversity in MIMO-radar direction finding,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2215–2225, Apr. 2007.
  36. M. Hua, Q. Wu, C. He, S. Ma, and W. Chen, “Joint active and passive beamforming design for irs-aided radar-communication,” IEEE Trans. Wirel. Commun., vol. 22, no. 4, pp. 2278–2294, Apr. 2023.
  37. Y. Liu, G. Liao, J. Xu, Z. Yang, and Y. Zhang, “Adaptive OFDM integrated radar and communications waveform design based on information theory,” IEEE Commun. Lett., vol. 21, no. 10, pp. 2174–2177, Jul. 2017.
  38. B. Tang, J. Tang, and Y. Peng, “MIMO radar waveform design in colored noise based on information theory,” IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4684–4697, May 2010.
  39. P. Stoica, J. Li, and Y. Xie, “On probing signal design for MIMO radar,” IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4151–4161, Aug. 2007.
  40. E. Björnson, M. Bengtsson, and B. Ottersten, “Pareto characterization of the multicell MIMO performance region with simple receivers,” IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4464–4469, ,Ay 2012.
  41. E. Björnson, G. Zheng, M. Bengtsson, and B. Ottersten, “Robust monotonic optimization framework for multicell MISO systems,” IEEE Trans. Signal Process., vol. 60, no. 5, pp. 2508–2523, Jan. 2012.
  42. R. Senanayake, P. J. Smith, T. Han, J. Evans, W. Moran, and R. Evans, “Frequency permutations for joint radar and communications,” IEEE Trans. Wirel. Commun., vol. 21, no. 11, pp. 9025–9040, May 2022.
  43. C.-K. Wen, S. Jin, and K.-K. Wong, “On the sum-rate of multiuser MIMO uplink channels with jointly-correlated rician fading,” IEEE Trans. Commun., vol. 59, no. 10, pp. 2883–2895, Aug. 2011.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com