Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Side-Channel Vulnerabilities in Superconducting Qubit Readout Architectures (2405.08962v1)

Published 14 May 2024 in quant-ph and cs.CR

Abstract: Frequency-multiplexing is an effective method to achieve resource-efficient superconducting qubit readout. Allowing multiple resonators to share a common feedline, the number of cables and passive components involved in the readout of a qubit can be drastically reduced. However, this improvement in scalability comes at the price of a crucial non-ideality -- an increased readout crosstalk. Prior works have targeted building better devices and discriminators to reduce its effects, as readout-crosstalk-induced qubit measurement errors are detrimental to the reliability of a quantum computer. However, in this work, we show that beyond the reliability of a system, readout crosstalk can introduce vulnerabilities in a system being shared among multiple users. These vulnerabilities are directly related to correlated errors due to readout crosstalk. These correlated errors can be exploited by nefarious attackers to predict the state of the victim qubits, resulting in information leakage.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. P. Das, S. S. Tannu, P. J. Nair, and M. Qureshi, “A case for multi-programming quantum computers,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 291–303, 2019.
  2. G. S. Ravi, K. N. Smith, P. Gokhale, and F. T. Chong, “Quantum computing in the cloud: Analyzing job and machine characteristics,” in 2021 IEEE International Symposium on Workload Characterization (IISWC), IEEE, Nov. 2021.
  3. D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer Networks, vol. 48, no. 5, pp. 701–716, 2005.
  4. S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web applications: A reality today, a challenge tomorrow,” in 2010 IEEE Symposium on Security and Privacy, pp. 191–206, IEEE, 2010.
  5. G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! a fast, cross-vm attack on aes,” in Research in Attacks, Intrusions and Defenses: 17th International Symposium, RAID 2014, Gothenburg, Sweden, September 17-19, 2014. Proceedings 17, pp. 299–319, Springer, 2014.
  6. M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cache attacks enable bulk key recovery on the cloud,” in Cryptographic Hardware and Embedded Systems–CHES 2016: 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings 18, pp. 368–388, Springer, 2016.
  7. B. Lienhard, A. Vepsäläinen, L. C. Govia, C. R. Hoffer, J. Y. Qiu, D. Ristè, M. Ware, D. Kim, R. Winik, A. Melville, B. Niedzielski, J. Yoder, G. J. Ribeill, T. A. Ohki, H. K. Krovi, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “Deep-neural-network discrimination of multiplexed superconducting-qubit states,” Physical Review Applied, vol. 17, Jan. 2022.
  8. S. Maurya, C. N. Mude, W. D. Oliver, B. Lienhard, and S. Tannu, “Scaling qubit readout with hardware efficient machine learning architectures,” in Proceedings of the 50th Annual International Symposium on Computer Architecture, ISCA ’23, ACM, June 2023.
  9. C. A. Ryan, B. R. Johnson, J. M. Gambetta, J. M. Chow, M. P. da Silva, O. E. Dial, and T. A. Ohki, “Tomography via correlation of noisy measurement records,” Phys. Rev. A, vol. 91, p. 022118, Feb 2015.
  10. M. Brooks, “The race to find quantum computing’s sweet spot,” Nature, vol. 617, pp. S1–S3, 2023.
  11. P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-Abhari, “Software mitigation of crosstalk on noisy intermediate-scale quantum computers,” in Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’20, (New York, NY, USA), p. 1001–1016, Association for Computing Machinery, 2020.
  12. A. Ash-Saki, M. Alam, and S. Ghosh, “Analysis of crosstalk in nisq devices and security implications in multi-programming regime,” in Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED ’20, (New York, NY, USA), p. 25–30, Association for Computing Machinery, 2020.
  13. A. A. Saki and S. Ghosh, “Qubit sensing: A new attack model for multi-programming quantum computing,” 2021.
  14. S. Deshpande, C. Xu, T. Trochatos, H. Wang, F. Erata, S. Han, Y. Ding, and J. Szefer, “Design of quantum computer antivirus,” in 2023 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 260–270, 2023.
  15. F. Erata, C. Xu, R. Piskac, and J. Szefer, “Quantum circuit reconstruction from power side-channel attacks on quantum computer controllers,” 2024.
  16. F. Arute et al., “Quantum Supremacy using a Programmable Superconducting Processor,” Nature, vol. 574, pp. 505–510, Oct. 2019.
  17. F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “Tunable coupling scheme for implementing high-fidelity two-qubit gates,” Phys. Rev. Applied, vol. 10, p. 054062, 2018.
  18. S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings: Improving reliability of quantum computers by orchestrating dissimilar mistakes,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 253–265, 2019.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com