Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Importance and Explainability in Quantum Machine Learning (2405.08917v1)

Published 14 May 2024 in cs.LG, math.QA, and stat.ML

Abstract: Many Machine Learning (ML) models are referred to as black box models, providing no real insights into why a prediction is made. Feature importance and explainability are important for increasing transparency and trust in ML models, particularly in settings such as healthcare and finance. With quantum computing's unique capabilities, such as leveraging quantum mechanical phenomena like superposition, which can be combined with ML techniques to create the field of Quantum Machine Learning (QML), and such techniques may be applied to QML models. This article explores feature importance and explainability insights in QML compared to Classical ML models. Utilizing the widely recognized Iris dataset, classical ML algorithms such as SVM and Random Forests, are compared against hybrid quantum counterparts, implemented via IBM's Qiskit platform: the Variational Quantum Classifier (VQC) and Quantum Support Vector Classifier (QSVC). This article aims to provide a comparison of the insights generated in ML by employing permutation and leave one out feature importance methods, alongside ALE (Accumulated Local Effects) and SHAP (SHapley Additive exPlanations) explainers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Andertoons, “Shakespeare’s cat: ”to be or not to be” - schrödinger’s cat,” 2024. [Online]. Available: https://andertoons.com/cat/cartoon/8046/shakespeares-cat-to-be-or-not-to-be-schrodingers-cat-both
  2. M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemporary Physics, vol. 56, no. 2, Oct 2014.
  3. D. J. Wineland, “Nobel lecture: Superposition, entanglement, and raising schrödinger’s cat,” Reviews of Modern Physics, vol. 85, no. 3, p. 1103–1114, Jul 2013.
  4. V. Belle and I. Papantonis, “Principles and practice of explainable machine learning,” Frontiers in Big Data, vol. 4, Jul 2021.
  5. E. Horel, “Towards explainable ai: feature significance and importance for machine learning models,” Ph.D. dissertation, Stanford University, 2020.
  6. [Online]. Available: https://scikit-learn.org/stable/modules/permutation_importance.html
  7. S. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” 2017.
  8. [Online]. Available: https://shap-lrjball.readthedocs.io/en/latest/
  9. C. Molnar, “Interpretable machine learning,” Aug 2023. [Online]. Available: https://christophm.github.io/interpretable-ml-book/ale.html
  10. Mazen Ahmed, “Non-linear support vector machines explained,” 2021. [Online]. Available: https://linguisticmaz.medium.com/support-vector-machines-explained-ii-f2688fbf02ae
  11. E. Wolsztynski, “Support vector machines.”
  12. ——, “Random forest.”
  13. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, 2017.
  14. H.-Y. Huang, M. Broughton, J. C. S. Chen, J. Li, M. Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, and J. R. McClean, “Quantum advantage in learning from experiments,” Science, vol. 376, no. 6598, 2022.
  15. IBM, “Quantum advantage.” [Online]. Available: https://www.ibm.com/thought-leadership/institute-business-value/public/static/images/Quantum-Report/Figure3.svg
  16. D. Diego, M. P. da Silva, C. A. Ryan, A. W. Cross, A. D. Córcoles, J. A. Smolin, J. M. Gambetta, M. J. Chow, and B. R. Johnson, “Demonstration of quantum advantage in machine learning,” npj Quantum Information, vol. 3, no. 1, 2017.
  17. V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, 2019.
  18. Qiskit, “Platypus/notebooks/summer-school/2021 at main · qiskit/platypus.” [Online]. Available: https://github.com/Qiskit/platypus/tree/main/notebooks/summer-school/2021#
  19. I. Glendinning, “The bloch sphere,” in QIA meeting. Vienna, 2005.
  20. Qiskit, “Building a quantum variational classifier using real-world data,” 2021. [Online]. Available: https://medium.com/qiskit/building-a-quantum-variational-classifier-using-real-world-data-809c59eb17c2
  21. A. Elbeltagi, “Vqc schematic.” [Online]. Available: https://www.researchgate.net/figure/Schematic-representation-of-a-variational-quantum-circuit-VQC-VQC-is-created-by_fig1_358006357
  22. “Quantum kernel machine learning - qiskit machine learning 0.7.2.” [Online]. Available: https://qiskit-community.github.io/qiskit-machine-learning/tutorials/03_quantum_kernel.html
  23. M. Rath and H. Date, “Quantum data encoding: A comparative analysis of classical-to-quantum mapping techniques and their impact on machine learning accuracy,” 2023.
  24. [Online]. Available: http://ndl.ethernet.edu.et/bitstream/123456789/73371/1/320.pdf
  25. Qiskit, “Ibm quantum documentation,” 2021. [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.ZZFeatureMap
  26. A. Das and P. Rad, “Opportunities and challenges in explainable artificial intelligence (xai): A survey,” arXiv preprint arXiv:2006.11371, 2020.
  27. “Permutation importance.” [Online]. Available: https://www.google.com/url?sa=i&url=https%3A%2F%2Ftowardsdatascience.com%2Ffeature-importance-with-neural-network-346eb6205743&psig=AOvVaw2sVSobbrj_S1EHpceIQimr&ust=1712314565451000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCNDRroOzqIUDFQAAAAAdAAAAABAE
  28. D. W. Apley and J. Zhu, “Visualizing the effects of predictor variables in black box supervised learning models,” Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 82, no. 4, pp. 1059–1086, 2020.
  29. I. Piatrenka and M. Rusek, “Quantum variational multi-class classifier for the iris data set,” in International Conference on Computational Science.   Springer, 2022, pp. 247–260.
  30. A. Baughman, K. Yogaraj, R. Hebbar, S. Ghosh, R. U. Haq, and Y. Chhabra, “Study of feature importance for quantum machine learning models,” arXiv preprint arXiv:2202.11204, 2022.
  31. P. Steinmüller, T. Schulz, F. Graf, and D. Herr, “explainable ai for quantum machine learning,” arXiv preprint arXiv:2211.01441, 2022.
  32. G. Abdulsalam, S. Meshoul, and H. Shaiba, “Explainable heart disease prediction using ensemble-quantum machine learning approach,” Intell. Autom. Soft Comput, vol. 36, no. 1, pp. 761–779, 2023.
  33. R. Heese, T. Gerlach, S. Mücke, S. Müller, M. Jakobs, and N. Piatkowski, “Explaining quantum circuits with shapley values: Towards explainable quantum machine learning,” arXiv preprint arXiv:2301.09138, 2023.
  34. [Online]. Available: https://scikit-learn.org/stable/datasets/toy_dataset.html
  35. [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.RealAmplitudes
  36. “Efficientsu2.” [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.EfficientSU2
  37. [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/0.44/qiskit.algorithms.optimizers.COBYLA
  38. [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.aqua.components.optimizers.SLSQP
  39. [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.aqua.algorithms.VQC
  40. M. Schuld and N. Killoran, “Is quantum advantage the right goal for quantum machine learning?” PRX Quantum, vol. 3, no. 3, Jul. 2022. [Online]. Available: http://dx.doi.org/10.1103/PRXQuantum.3.030101
Citations (1)

Summary

We haven't generated a summary for this paper yet.