Feature Importance and Explainability in Quantum Machine Learning (2405.08917v1)
Abstract: Many Machine Learning (ML) models are referred to as black box models, providing no real insights into why a prediction is made. Feature importance and explainability are important for increasing transparency and trust in ML models, particularly in settings such as healthcare and finance. With quantum computing's unique capabilities, such as leveraging quantum mechanical phenomena like superposition, which can be combined with ML techniques to create the field of Quantum Machine Learning (QML), and such techniques may be applied to QML models. This article explores feature importance and explainability insights in QML compared to Classical ML models. Utilizing the widely recognized Iris dataset, classical ML algorithms such as SVM and Random Forests, are compared against hybrid quantum counterparts, implemented via IBM's Qiskit platform: the Variational Quantum Classifier (VQC) and Quantum Support Vector Classifier (QSVC). This article aims to provide a comparison of the insights generated in ML by employing permutation and leave one out feature importance methods, alongside ALE (Accumulated Local Effects) and SHAP (SHapley Additive exPlanations) explainers.
- Andertoons, “Shakespeare’s cat: ”to be or not to be” - schrödinger’s cat,” 2024. [Online]. Available: https://andertoons.com/cat/cartoon/8046/shakespeares-cat-to-be-or-not-to-be-schrodingers-cat-both
- M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemporary Physics, vol. 56, no. 2, Oct 2014.
- D. J. Wineland, “Nobel lecture: Superposition, entanglement, and raising schrödinger’s cat,” Reviews of Modern Physics, vol. 85, no. 3, p. 1103–1114, Jul 2013.
- V. Belle and I. Papantonis, “Principles and practice of explainable machine learning,” Frontiers in Big Data, vol. 4, Jul 2021.
- E. Horel, “Towards explainable ai: feature significance and importance for machine learning models,” Ph.D. dissertation, Stanford University, 2020.
- [Online]. Available: https://scikit-learn.org/stable/modules/permutation_importance.html
- S. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” 2017.
- [Online]. Available: https://shap-lrjball.readthedocs.io/en/latest/
- C. Molnar, “Interpretable machine learning,” Aug 2023. [Online]. Available: https://christophm.github.io/interpretable-ml-book/ale.html
- Mazen Ahmed, “Non-linear support vector machines explained,” 2021. [Online]. Available: https://linguisticmaz.medium.com/support-vector-machines-explained-ii-f2688fbf02ae
- E. Wolsztynski, “Support vector machines.”
- ——, “Random forest.”
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, 2017.
- H.-Y. Huang, M. Broughton, J. C. S. Chen, J. Li, M. Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, and J. R. McClean, “Quantum advantage in learning from experiments,” Science, vol. 376, no. 6598, 2022.
- IBM, “Quantum advantage.” [Online]. Available: https://www.ibm.com/thought-leadership/institute-business-value/public/static/images/Quantum-Report/Figure3.svg
- D. Diego, M. P. da Silva, C. A. Ryan, A. W. Cross, A. D. Córcoles, J. A. Smolin, J. M. Gambetta, M. J. Chow, and B. R. Johnson, “Demonstration of quantum advantage in machine learning,” npj Quantum Information, vol. 3, no. 1, 2017.
- V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, 2019.
- Qiskit, “Platypus/notebooks/summer-school/2021 at main · qiskit/platypus.” [Online]. Available: https://github.com/Qiskit/platypus/tree/main/notebooks/summer-school/2021#
- I. Glendinning, “The bloch sphere,” in QIA meeting. Vienna, 2005.
- Qiskit, “Building a quantum variational classifier using real-world data,” 2021. [Online]. Available: https://medium.com/qiskit/building-a-quantum-variational-classifier-using-real-world-data-809c59eb17c2
- A. Elbeltagi, “Vqc schematic.” [Online]. Available: https://www.researchgate.net/figure/Schematic-representation-of-a-variational-quantum-circuit-VQC-VQC-is-created-by_fig1_358006357
- “Quantum kernel machine learning - qiskit machine learning 0.7.2.” [Online]. Available: https://qiskit-community.github.io/qiskit-machine-learning/tutorials/03_quantum_kernel.html
- M. Rath and H. Date, “Quantum data encoding: A comparative analysis of classical-to-quantum mapping techniques and their impact on machine learning accuracy,” 2023.
- [Online]. Available: http://ndl.ethernet.edu.et/bitstream/123456789/73371/1/320.pdf
- Qiskit, “Ibm quantum documentation,” 2021. [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.ZZFeatureMap
- A. Das and P. Rad, “Opportunities and challenges in explainable artificial intelligence (xai): A survey,” arXiv preprint arXiv:2006.11371, 2020.
- “Permutation importance.” [Online]. Available: https://www.google.com/url?sa=i&url=https%3A%2F%2Ftowardsdatascience.com%2Ffeature-importance-with-neural-network-346eb6205743&psig=AOvVaw2sVSobbrj_S1EHpceIQimr&ust=1712314565451000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCNDRroOzqIUDFQAAAAAdAAAAABAE
- D. W. Apley and J. Zhu, “Visualizing the effects of predictor variables in black box supervised learning models,” Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 82, no. 4, pp. 1059–1086, 2020.
- I. Piatrenka and M. Rusek, “Quantum variational multi-class classifier for the iris data set,” in International Conference on Computational Science. Springer, 2022, pp. 247–260.
- A. Baughman, K. Yogaraj, R. Hebbar, S. Ghosh, R. U. Haq, and Y. Chhabra, “Study of feature importance for quantum machine learning models,” arXiv preprint arXiv:2202.11204, 2022.
- P. Steinmüller, T. Schulz, F. Graf, and D. Herr, “explainable ai for quantum machine learning,” arXiv preprint arXiv:2211.01441, 2022.
- G. Abdulsalam, S. Meshoul, and H. Shaiba, “Explainable heart disease prediction using ensemble-quantum machine learning approach,” Intell. Autom. Soft Comput, vol. 36, no. 1, pp. 761–779, 2023.
- R. Heese, T. Gerlach, S. Mücke, S. Müller, M. Jakobs, and N. Piatkowski, “Explaining quantum circuits with shapley values: Towards explainable quantum machine learning,” arXiv preprint arXiv:2301.09138, 2023.
- [Online]. Available: https://scikit-learn.org/stable/datasets/toy_dataset.html
- [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.RealAmplitudes
- “Efficientsu2.” [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.EfficientSU2
- [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/0.44/qiskit.algorithms.optimizers.COBYLA
- [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.aqua.components.optimizers.SLSQP
- [Online]. Available: https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.aqua.algorithms.VQC
- M. Schuld and N. Killoran, “Is quantum advantage the right goal for quantum machine learning?” PRX Quantum, vol. 3, no. 3, Jul. 2022. [Online]. Available: http://dx.doi.org/10.1103/PRXQuantum.3.030101