Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parametrically encircled higher-order exceptional points in anti-parity-time symmetric optical microcavities (2405.08850v2)

Published 14 May 2024 in physics.optics

Abstract: The fascinating realm of non-Hermitian physics with the interplay of parity (P) and time-reversal (T) symmetry has been witnessing immense attention in exploring unconventional physics at Exceptional Point (EP) singularities. Particularly, the physics of PT-symmetry, anti-PT (APT)-symmetry, and the emergence of EPs have ignited fervor in photonics. Beyond the conventional relation between EP and PT-symmetric phase transitions, this study delves into hosting higher-order EPs in a specially designed APT-symmetric Fabry-P\'erot-type microcavity. We unveil the captivating physics of the parametric encirclement schemes to explore the branch-point behaviors of EPs up to order three in terms of successive state-flipping, while optimizing the designed cavity under APT-symmetric constraints. The insights from our findings are poised to boost research in optical metamaterials, meeting the demands of APT-symmetry and paving the way for a novel class of photonic devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Ş. K. Özdemir, S. Rotter, F. Nori,  and L. Yang, “Parity–time symmetry and exceptional points in photonics,” Nat. Mater. 18, 783–798 (2019).
  2. M.-A. Miri and A. Alù, “Exceptional points in optics and photonics,” Science 363, eaar7709 (2019).
  3. W. D. Heiss, “The physics of exceptional points,” J. Phys. A: Math. Theor. 45, 444016 (2012).
  4. C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss,  and A. Richter, “Encircling an exceptional point,” Phys. Rev. E 69, 056216 (2004).
  5. A. Laha, D. Beniwal,  and S. Ghosh, “Successive switching among four states in a gain-loss-assisted optical microcavity hosting exceptional points up to order four,” Phys. Rev. A 103, 023526 (2021).
  6. M. Müller and I. Rotter, “Exceptional points in open quantum systems,” J. Phys. A: Math. Theor. 41, 244018 (2008).
  7. A. Laha, A. Biswas,  and S. Ghosh, “Nonadiabatic modal dynamics around exceptional points in an all-lossy dual-mode optical waveguide: Toward chirality-driven asymmetric mode conversion,” Phys. Rev. Applied 10, 054008 (2018).
  8. I. I. Arkhipov, A. Miranowicz, F. Minganti, Ş. K. Özdemir,  and F. Nori, “Dynamically crossing diabolic points while encircling exceptional curves: A programmable symmetric-asymmetric multimode switch,” Nature Communications 14, 2076 (2023).
  9. C. Wang, W. R. Sweeney, A. D. Stone,  and L. Yang, “Coherent perfect absorption at an exceptional point,” Science 373, 1261–1265 (2021).
  10. T. Goldzak, A. A. Mailybaev,  and N. Moiseyev, “Light stops at exceptional points,” Phys. Rev. Lett. 120, 013901 (2018).
  11. A. Laha, S. Dey, H. K. Gandhi, A. Biswas,  and S. Ghosh, “Exceptional point and toward mode-selective optical isolation,” ACS Photonics 7, 967–974 (2020).
  12. J. Wiersig, “Review of exceptional point-based sensors,” Photon. Res. 8, 1457–1467 (2020).
  13. M. Naghiloo, M. Abbasi, Y. N. Joglekar,  and K. W. Murch, “Quantum state tomography across the exceptional point in a single dissipative qubit,” Nature Physics 15, 1232–1236 (2019).
  14. F. Minganti, A. Miranowicz, R. W. Chhajlany,  and F. Nori, “Quantum exceptional points of non-hermitian hamiltonians and liouvillians: The effects of quantum jumps,” Phys. Rev. A 100, 062131 (2019).
  15. L. Ge and H. E. Türeci, “Antisymmetric 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-photonic structures with balanced positive- and negative-index materials,” Phys. Rev. A 88, 053810 (2013).
  16. X.-L. Zhang, T. Jiang,  and C. T. Chan, “Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes,” Light: Science & Applications 8, 88 (2019).
  17. Z. Feng and X. Sun, “Harnessing dynamical encircling of an exceptional point in anti-𝒫⁢𝒯𝒫𝒯\mathcal{P}\mathcal{T}caligraphic_P caligraphic_T-symmetric integrated photonic systems,” Phys. Rev. Lett. 129, 273601 (2022).
  18. H. Qi, X. Hu, X. Wang,  and Q. Gong, “Encircling an exceptional point in a multiwaveguide anti–parity-time-symmetry system,” Phys. Rev. A 103, 063520 (2021).
  19. L. Ge, Y. D. Chong, S. Rotter, H. E. Türeci,  and A. D. Stone, “Unconventional modes in lasers with spatially varying gain and loss,” Phys. Rev. A 84, 023820 (2011).

Summary

We haven't generated a summary for this paper yet.