Self-testing tilted strategies for maximal loophole-free nonlocality (2405.08743v2)
Abstract: The degree of experimentally attainable nonlocality, as gauged by the loophole-free or effective violation of Bell inequalities, remains severely limited due to inefficient detectors. We address an experimentally motivated question: Which quantum strategies attain the maximal loophole-free nonlocality in the presence of inefficient detectors? For any Bell inequality and any specification of detection efficiencies, the optimal strategies are those that maximally violate a tilted version of the Bell inequality in ideal conditions. In the simplest scenario, we demonstrate that the quantum strategies that maximally violate the doubly-tilted versions of Clauser-Horne-Shimony-Holt inequality are unique up to local isometries. We utilize a Jordan's lemma and Gr\"obner basis-based proof technique to analytically derive self-testing statements for the entire family of doubly-tilted CHSH inequalities and numerically demonstrate their robustness. These results enable us to reveal the insufficiency of even high levels of the Navascu\'es--Pironio--Ac\'in hierarchy to saturate the maximum quantum violation of these inequalities.
- J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics Physique Fizika 1, 195 (1964).
- A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
- D. Mayers and A. Yao, Quantum cryptography with imperfect apparatus, in Proceedings 39th Annual Symposium on Foundations of Computer Science (IEEE, Los Alamitos, CA, 1998) p. 503.
- J. Barrett, L. Hardy, and A. Kent, No signaling and quantum key distribution, Phys. Rev. Lett. 95, 010503 (2005a).
- Optical fiber loss and attenuation, https://www.fiberoptics4sale.com/blogs/archive-posts/95048006-optical-fiber-loss-and-attenuation (2022).
- A. Garg and N. D. Mermin, Detector inefficiencies in the Einstein-Podolsky-Rosen experiment, Phys. Rev. D 35, 3831 (1987).
- P. H. Eberhard, Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment, Phys. Rev. A 47, R747 (1993).
- T. Vértesi, S. Pironio, and N. Brunner, Closing the detection loophole in Bell experiments using qudits, Phys. Rev. Lett. 104, 060401 (2010).
- A. Chaturvedi, G. Viola, and M. Pawłowski, Extending loophole-free nonlocal correlations to arbitrarily large distances, npj Quantum Information 10, 7 (2024).
- P. H. Eberhard and P. Rosselet, Bell’s theorem based on a generalized EPR criterion of reality, Found. Phys. 25, 91 (1995).
- C. Branciard, Detection loophole in Bell experiments: How postselection modifies the requirements to observe nonlocality, Phys. Rev. A 83, 032123 (2011).
- C. Bamps and S. Pironio, Sum-of-squares decompositions for a family of Clauser-Horne-Shimony-Holt-like inequalities and their application to self-testing, Phys. Rev. A 91, 052111 (2015).
- A. Acín, S. Massar, and S. Pironio, Randomness versus nonlocality and entanglement, Phys. Rev. Lett. 108, 100402 (2012).
- R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics (Springer New York, 2013).
- M. Araújo, F. Hirsch, and M. T. Quintino, Bell nonlocality with a single shot, Quantum 4, 353 (2020).
- P. Mironowicz, Semi-definite programming and quantum information, Journal of Physics A: Mathematical and Theoretical (2023).
- N. Gigena, G. Scala, and A. Mandarino, Revisited aspects of the local set in CHSH Bell scenario, International Journal of Quantum Information 10.1142/s0219749923400051 (2022).
- A. Cabello and J.-A. Larsson, Minimum detection efficiency for a loophole-free atom-photon Bell experiment, Phys. Rev. Lett. 98, 220402 (2007).
- T. Cope and R. Colbeck, Bell inequalities from no-signaling distributions, Phys. Rev. A 100, 022114 (2019).
- I. Šupić and J. Bowles, Self-testing of quantum systems: a review, Quantum 4, 337 (2020a).
- M. Navascués, S. Pironio, and A. Acín, Bounding the set of quantum correlations, Phys. Rev. Lett. 98, 010401 (2007).
- A. Garner and M. Araújo, Moment, https://github.com/ajpgarner/moment (2023).
- J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference (Taipei, Taiwan, 2004) pp. 284–289, https://yalmip.github.io/.
- L. Masanes, Extremal quantum correlations for N parties with two dichotomic observables per site (2005), arXiv:quant-ph/0512100 [quant-ph] .
- I. Šupić and J. Bowles, Self-testing of quantum systems: a review, Quantum 4, 337 (2020b).
- E. Panwar, P. Pandya, and M. Wieśniak, An elegant scheme of self-testing for multipartite Bell inequalities, npj Quantum Information 9, 71 (2023).
- E. P. Lobo, J. Pauwels, and S. Pironio, Certifying long-range quantum correlations through routed Bell tests, Quantum 8, 1332 (2024).
- G. Scala, S. A. Ghoreishi, and M. Pawłowski, Advantages of quantum communication revealed by the reexamination of hyperbit theory limitations, Phys. Rev. A 109, 022230 (2024).
- R. Augusiak, M. Demianowicz, and P. Horodecki, Universal observable detecting all two-qubit entanglement and determinant-based separability tests, Phys. Rev. A 77, 030301 (2008).