Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

I-CTRL: Imitation to Control Humanoid Robots Through Constrained Reinforcement Learning (2405.08726v1)

Published 14 May 2024 in cs.RO and cs.AI

Abstract: This paper addresses the critical need for refining robot motions that, despite achieving a high visual similarity through human-to-humanoid retargeting methods, fall short of practical execution in the physical realm. Existing techniques in the graphics community often prioritize visual fidelity over physics-based feasibility, posing a significant challenge for deploying bipedal systems in practical applications. Our research introduces a constrained reinforcement learning algorithm to produce physics-based high-quality motion imitation onto legged humanoid robots that enhance motion resemblance while successfully following the reference human trajectory. We name our framework: I-CTRL. By reformulating the motion imitation problem as a constrained refinement over non-physics-based retargeted motions, our framework excels in motion imitation with simple and unique rewards that generalize across four robots. Moreover, our framework can follow large-scale motion datasets with a unique RL agent. The proposed approach signifies a crucial step forward in advancing the control of bipedal robots, emphasizing the importance of aligning visual and physical realism for successful motion imitation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.