Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Almost-Balanced Sequences (2405.08625v1)

Published 14 May 2024 in cs.IT and math.IT

Abstract: This paper presents a novel approach to address the constrained coding challenge of generating almost-balanced sequences. While strictly balanced sequences have been well studied in the past, the problem of designing efficient algorithms with small redundancy, preferably constant or even a single bit, for almost balanced sequences has remained unsolved. A sequence is $\varepsilon(n)$-almost balanced if its Hamming weight is between $0.5n\pm \varepsilon(n)$. It is known that for any algorithm with a constant number of bits, $\varepsilon(n)$ has to be in the order of $\Theta(\sqrt{n})$, with $O(n)$ average time complexity. However, prior solutions with a single redundancy bit required $\varepsilon(n)$ to be a linear shift from $n/2$. Employing an iterative method and arithmetic coding, our emphasis lies in constructing almost balanced codes with a single redundancy bit. Notably, our method surpasses previous approaches by achieving the optimal balanced order of $\Theta(\sqrt{n})$. Additionally, we extend our method to the non-binary case considering $q$-ary almost polarity-balanced sequences for even $q$, and almost symbol-balanced for $q=4$. Our work marks the first asymptotically optimal solutions for almost-balanced sequences, for both, binary and non-binary alphabet.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. D. Knuth, “Efficient balanced codes,” IEEE Transactions on Information Theory, vol. 32, no. 1, pp. 51–53, 1986.
  2. M. Blawat, K. Gaedke, I. Huetter, X.-M. Chen, B. Turczyk, S. Inverso, B. W. Pruitt, and G. M. Church, “Forward error correction for DNA data storage,” Procedia Computer Science, vol. 80, pp. 1011–1022, 2016.
  3. R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust chemical preservation of digital information on DNA in silica with error-correcting codes,” Angewandte Chemie Int. Edition, no. 8, pp. 2552–2555, Feb. 2015.
  4. Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient storage architecture,” Science, vol. 355, no. 6328, pp. 950–954, Mar. 2017.
  5. S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free DNA-based data storage,” Scientific reports, vol. 7, no. 1, p. 5011, 2017.
  6. S. M. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 1, no. 3, pp. 230–248, 2015.
  7. L. Tallini and B. Bose, “Balanced codes with parallel encoding and decoding,” IEEE Transactions on Computers, vol. 48, no. 8, pp. 794–814, 1999.
  8. L. Tallini, R. Capocelli, and B. Bose, “Design of some new efficient balanced codes,” IEEE Transactions on Information Theory, vol. 42, no. 3, pp. 790–802, 1996.
  9. J. H. Weber and K. A. S. Immink, “Knuth’s balanced codes revisited,” IEEE Transactions on Information Theory, vol. 56, no. 4, pp. 1673–1679, 2010.
  10. K. A. Schouhamer Immink and J. H. Weber, “Very efficient balanced codes,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 2, pp. 188–192, 2010.
  11. L. G. Tallini and U. Vaccaro, “Efficient m-ary balanced codes,” Discrete Applied Mathematics, vol. 92, no. 1, pp. 17–56, 1999.
  12. R. Mascella and L. Tallini, “On symbol permutation invariant balanced codes,” in Proceedings of the International Symposium on Information Theory (ISIT), 2005, pp. 2100–2104.
  13. ——, “Efficient m-ary balanced codes which are invariant under symbol permutation,” IEEE Transactions on Computers, vol. 55, no. 8, pp. 929–946, 2006.
  14. T. G. Swart and J. H. Weber, “Efficient balancing of q-ary sequences with parallel decoding,” in IEEE International Symposium on Information Theory (ISIT), 2009, pp. 1564–1568.
  15. J. H. Weber, K. A. S. Immink, P. H. Siegel, and T. G. Swart, “Polarity-balanced codes,” in Information Theory and Applications Workshop (ITA), 2013, pp. 1–5.
  16. K. A. S. Immink, J. H. Weber, and H. C. Ferreira, “Balanced runlength limited codes using knuth’s algorithm,” in Proceedings of the IEEE International Symposium on Information Theory (ISIT), 2011, pp. 317–320.
  17. T. T. Nguyen, K. Cai, and K. A. S. Immink, “Binary subblock energy-constrained codes: Knuth’s balancing and sequence replacement techniques,” in IEEE International Symposium on Information Theory (ISIT).   IEEE, 2020, pp. 37–41.
  18. A. Kobovich, O. Leitersdorf, D. Bar-Lev, and E. Yaakobi, “Codes for constrained periodicity,” in IEEE International Symposium on Information Theory and its Applications (ISITA), 2022.
  19. ——, “Universal framework for parametric constrained coding,” in Proceedings of the IEEE International Symposium on Information Theory (ISIT), 2024.
  20. D. Bar-Lev, A. Kobovich, O. Leitersdorf, and E. Yaakobi, “Universal framework for parametric constrained coding,” arXiv preprint arXiv:2304.01317, 2023.
  21. J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM Journal of research and development, vol. 23, no. 2, pp. 149–162, 1979.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com