Industrial Metaverse: Enabling Technologies, Open Problems, and Future Trends (2405.08542v1)
Abstract: As an emerging technology that enables seamless integration between the physical and virtual worlds, the Metaverse has great potential to be deployed in the industrial production field with the development of extended reality (XR) and next-generation communication networks. This deployment, called the Industrial Metaverse, is used for product design, production operations, industrial quality inspection, and product testing. However, there lacks of in-depth understanding of the enabling technologies associated with the Industrial Metaverse. This encompasses both the precise industrial scenarios targeted by each technology and the potential migration of technologies developed in other domains to the industrial sector. Driven by this issue, in this article, we conduct a comprehensive survey of the state-of-the-art literature on the Industrial Metaverse. Specifically, we first analyze the advantages of the Metaverse for industrial production. Then, we review a collection of key enabling technologies of the Industrial Metaverse, including blockchain (BC), digital twin (DT), 6G, XR, and AI, and analyze how these technologies can support different aspects of industrial production. Subsequently, we present numerous formidable challenges encountered within the Industrial Metaverse, including confidentiality and security concerns, resource limitations, and interoperability constraints. Furthermore, we investigate the extant solutions devised to address them. Finally, we briefly outline several open issues and future research directions of the Industrial Metaverse.
- Y. Zhao, J. Jiang, Y. Chen, R. Liu, Y. Yang, X. Xue, and S. Chen, “Metaverse: Perspectives from graphics, interactions and visualization,” Vis. Informatics, vol. 6, pp. 56–67, Mar. 2022.
- K. Li, Y.-K. Cui, W. Li, T. Lv, X. Yuan, S. Li, W. Ni, M. Simsek, and F. Dressler, “When internet of things meets metaverse: Convergence of physical and cyber worlds,” IEEE Internet Things J., vol. 10, pp. 4148–4173, Aug. 2022.
- B. Yang, S. Yang, Z. Lv, F. Wang, and T. Olofsson, “Application of digital twins and metaverse in the field of fluid machinery pumps and fans: A review,” Sensors (Basel, Switzerland), vol. 22, Nov. 2022.
- L. Chang, Z. Zhang, P. Li, S. Xi, W.-X. Guo, Y. Shen, Z. Xiong, J. Kang, D. T. Niyato, X. Qiao, and Y. Wu, “6g-enabled edge ai for metaverse: Challenges, methods, and future research directions,” ArXiv, vol. abs/2204.06192, 2022.
- P. Bhattacharya, D. Saraswat, D. Savaliya, S. Sanghavi, A. Verma, V. Sakariya, S. Tanwar, R. Sharma, M. S. Răboacă, and D. L. Manea, “Towards future internet: The metaverse perspective for diverse industrial applications,” Mathematics, Feb. 2023.
- D. Mourtzis, J. D. Angelopoulos, and N. Panopoulos, “Blockchain integration in the era of industrial metaverse,” Applied Sciences, Jan. 2023.
- G. R. E. Said, “Metaverse-based learning opportunities and challenges: A phenomenological metaverse human–computer interaction study,” Electronics, Mar. 2023.
- N. Kshetri, “The economics of the industrial metaverse,” IT Prof., vol. 25, no. 1, pp. 84–88, 2023.
- Z. Dong, X. Zhu, J. Cao, Y. Jiang, and V. K. N. Lau, “Task-oriented communications for industrial metaverse: Key techniques and open challenges,” IEEE Internet Things Mag., vol. 6, no. 4, pp. 34–40, 2023.
- J. D. N. Dionisio, W. G. Burns, and R. Gilbert, “3d virtual worlds and the metaverse: Current status and future possibilities,” ACM Comput. Surv., vol. 45, pp. 34:1–34:38, 2013.
- S.-M. Park and Y.-G. Kim, “A metaverse: Taxonomy, components, applications, and open challenges,” IEEE Access, vol. 10, pp. 4209–4251, 2022.
- Y. Wang and J. Zhao, “Mobile edge computing, metaverse, 6g wireless communications, artificial intelligence, and blockchain: Survey and their convergence,” ArXiv, vol. abs/2209.14147, 2022.
- J. Yu, A. Y. Alhilal, P. Hui, and D. H. K. Tsang, “6g mobile-edge empowered metaverse: Requirements, technologies, challenges and research directions,” ArXiv, vol. abs/2211.04854, 2022.
- B. Kye, N. Han, E. Kim, Y. Park, and S. Jo, “Educational applications of metaverse: possibilities and limitations,” Journal of Educational Evaluation for Health Professions, vol. 18, 2021.
- A. Tlili, R. Huang, and Kinshuk, “Metaverse for climbing the ladder toward ‘industry 5.0’ and ‘society 5.0’?” The Service Industries Journal, Feb. 2023.
- J. Li, Y. Shao, K. Wei, M. Ding, C. Ma, L. Shi, Z. Han, and H. V. Poor, “Blockchain assisted decentralized federated learning (BLADE-FL): Performance analysis and resource allocation,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 10, pp. 2401–2415, Dec. 2021.
- Y. Du, J. Li, L. Shi, Z. Wang, T. Wang, and Z. Han, “A novel oracle-aided industrial iot blockchain: Architecture, challenges, and potential solutions,” IEEE Netw., vol. 37, no. 3, pp. 8–15, 2023.
- Z. Lin, P. Xiangli, Z. Li, F. Liang, and A. Li, “Towards metaverse manufacturing: A blockchain-based trusted collaborative governance system,” Shanghai, China, Mar. 2022.
- H. Xu, Z. Li, Z. Li, X. Zhang, Y. Sun, and L. Zhang, “Metaverse native communication: A blockchain and spectrum prospective,” Seoul, South Korea, Mar. 2022, pp. 7–12.
- J. Kang, D. Ye, J. Nie, J. Xiao, X. Deng, S. Wang, Z. Xiong, R. Yu, and D. T. Niyato, “Blockchain-based federated learning for industrial metaverses: Incentive scheme with optimal aoi,” Espoo, Finland, Aug. 2022, pp. 71–78.
- Z. Wang, Q. Hu, M. Xu, and H. Jiang, “Blockchain-based edge resource sharing for metaverse,” Denver, Colorado, Aug. 2022, pp. 620–626.
- H. Huang, X. Zeng, L. Zhao, C. Qiu, H. Wu, and L. Fan, “Fusion of building information modeling and blockchain for metaverse: A survey,” IEEE Open Journal of the Computer Society, vol. 3, pp. 195–207, 2022.
- P. Bhattacharya, M. S. Obaidat, D. Savaliya, S. Sanghavi, S. Tanwar, and B. Sadoun, “Metaverse assisted telesurgery in healthcare 5.0: An interplay of blockchain and explainable ai,” 2022 International Conference on Computer, Information and Telecommunication Systems (CITS), pp. 1–5, 2022.
- R. Gupta, S. Tanwar, S. Tyagi, N. Kumar, M. S. Obaidat, and B. Sadoun, “Habits: Blockchain-based telesurgery framework for healthcare 4.0,” 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), pp. 1–5, Aug. 2019.
- A. R. Santhi and P. Muthuswamy, “Influence of blockchain technology in manufacturing supply chain and logistics,” Logistics, Fed. 2022.
- X. Deng, J. Li, C. Ma, K. Wei, L. Shi, M. Ding, W. Chen, and H. V. Poor, “Blockchain assisted federated learning over wireless channels: Dynamic resource allocation and client scheduling,” IEEE Trans. Wireless Commun., vol. 22, no. 5, pp. 3537–3553, May. 2021.
- Y. Wan, Y. Gao, and Y. Hu, “Blockchain application and collaborative innovation in the manufacturing industry: Based on the perspective of social trust,” Technological Forecasting and Social Change, Apr. 2022.
- X. Zhou, X. Xu, W. Liang, Z. Zeng, S. Shimizu, L. T. Yang, and Q. Jin, “Intelligent small object detection for digital twin in smart manufacturing with industrial cyber-physical systems,” IEEE Transactions on Industrial Informatics, vol. 18, pp. 1377–1386, Feb. 2022.
- Y. Wu, H. Cao, G. Yang, T. Lu, and S. Wan, “Digital twin of intelligent small surface defect detection with cyber-manufacturing systems,” ACM Transactions on Internet Technology, Nov. 2022.
- D. Guo, R. Y. Zhong, Y. Rong, and G. Q. Huang, “Synchronization of shop-floor logistics and manufacturing under iiot and digital twin-enabled graduation intelligent manufacturing system,” IEEE Transactions on Cybernetics, vol. 53, pp. 2005–2016, Sep. 2021.
- Z. Yin, Y. Lin, Y. Zhang, Y. Qian, F. Shu, and J. Li, “Collaborative multiagent reinforcement learning aided resource allocation for uav anti-jamming communication,” IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23 995–24 008, 2022.
- J. Yu, A. Y. Alhilal, P. Hui, and D. Tsang, “Bi-directional digital twin and edge computing in the metaverse,” ArXiv, vol. abs/2211.08700, Nov. 2022.
- C. Dai, K. Yang, and C. Deng, “A service placement algorithm based on merkle tree in mec systems assisted by digital twin networks,” Chongqing, China, Dec. 2022, pp. 37–43.
- Y. Han, D. T. Niyato, C. Leung, D. I. Kim, K. Zhu, S. Feng, X. S. Shen, and C. Miao, “A dynamic hierarchical framework for iot-assisted digital twin synchronization in the metaverse,” IEEE Internet of Things Journal, vol. 10, pp. 268–284, Jan. 2023.
- J. Zhang, M. Zong, and W. Li, “A truthful mechanism for multibase station resource allocation in metaverse digital twin framework,” Processes, Dec. 2022.
- D. V. Huynh, S. R. Khosravirad, A. Masaracchia, O. A. Dobre, and T. Q. Duong, “Edge intelligence-based ultra-reliable and low-latency communications for digital twin-enabled metaverse,” IEEE Wireless Communications Letters, vol. 11, pp. 1733–1737, Aug. 2022.
- C. Yang, X. Tu, J. Autiosalo, R. Ala-Laurinaho, J. Mattila, P. Salminen, and K. Tammi, “Extended reality application framework for a digital-twin-based smart crane,” Applied Sciences, Jun. 2022.
- C. Coupry, S. Noblecourt, P. Richard, D. Baudry, and D. Bigaud, “Bim-based digital twin and xr devices to improve maintenance procedures in smart buildings: A literature review,” Applied Sciences, Jul. 2021.
- S. Jerov and A. Tepljakov, “Digital twins in extended reality for control system applications,” 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 274–279, Jul. 2020.
- X. Tu, J. Autiosalo, R. Ala-Laurinaho, C. Yang, P. Salminen, and K. Tammi, “Twinxr: Method for using digital twin descriptions in industrial extended reality applications,” in Frontiers in Virtual Reality, Jan. 2023.
- B. B. Gupta, A. Gaurav, K. T. Chui, L. Wang, V. Arya, A. Shukla, and D. Peraković, “Ddos attack detection through digital twin technique in metaverse,” Las Vegas, NV, USA, Jan. 2023, pp. 1–5.
- L. Zhang, L. Feng, J. Wang, and K.-S. Lin, “Integration of design, manufacturing, and service based on digital twin to realize intelligent manufacturing,” Machines, Apr. 2022.
- I. Onaji, D. Tiwari, P. Soulatiantork, B. Song, and A. Tiwari, “Digital twin in manufacturing: conceptual framework and case studies,” International Journal of Computer Integrated Manufacturing, vol. 35, pp. 831 – 858, Jan. 2022.
- D. Mourtzis, “Digital twin inception in the era of industrial metaverse,” in Frontiers in Manufacturing Technology, Apr. 2023.
- B. Siniarski, C. de Alwis, G. Yenduri, T. Huynh-The, G. Gür, T. R. Gadekallu, and M. Liyanage, “Need of 6g for the metaverse realization,” ArXiv, vol. abs/2301.03386, Dec. 2022.
- J. Huang, H. Gao, S. Wan, and Y. Chen, “Aoi-aware energy control and computation offloading for industrial iot,” Future Gener. Comput. Syst., vol. 139, pp. 29–37, Sep. 2022.
- J. Cao, X. Zhu, S. Sun, Z. Wei, Y. Jiang, J. Wang, and V. K. N. Lau, “Toward industrial metaverse: Age of information, latency and reliability of short-packet transmission in 6g,” IEEE Wireless Communications, vol. 30, pp. 40–47, Apr. 2023.
- A. M. Aslam, R. Chaudhary, A. Bhardwaj, I. Budhiraja, N. Kumar, and S. Zeadally, “Metaverse for 6g and beyond: The next revolution and deployment challenges,” IEEE Internet of Things Magazine, vol. 6, pp. 32–39, Mar. 2023.
- P. K. Padhi and F. Charrua-Santos, “6g enabled industrial internet of everything: Towards a theoretical framework,” Applied System Innovation, Feb. 2021.
- H. Jalo, H. Pirkkalainen, O. Torro, E. Pessot, A. Zangiacomi, and A. Tepljakov, “Extended reality technologies in small and medium-sized european industrial companies: level of awareness, diffusion and enablers of adoption,” Virtual Reality, vol. 26, pp. 1745 – 1761, Jun. 2022.
- J. Guan, J. Irizawa, and A. Morris, “Extended reality and internet of things for hyper-connected metaverse environments,” Christchurch, New Zealand, Mar. 2022, pp. 163–168.
- T. Holz, A. G. Campbell, G. M. P. O’Hare, J. W. Stafford, A. N. Martin, and M. Dragone, “Mira - mixed reality agents,” Int. J. Hum. Comput. Stud., vol. 69, pp. 251–268, Apr. 2011.
- J. A. Rincon, J.-L. Poza-Luján, V. Julián, J.-L. Posadas-Yagüe, and C. Carrascosa, “Extending mam5 meta-model and jacaliv e framework to integrate smart devices from real environments,” PLoS ONE, vol. 11, Feb. 2016.
- A. Croatti and A. Ricci, “A model and platform for building agent-based pervasive mixed reality systems,” in Practical Applications of Agents and Multi-Agent Systems, Jun. 2018.
- R. Prada, I. S. W. B. Prasetya, F. M. Kifetew, F. Dignum, T. E. J. Vos, J. Lander, J.-Y. Donnart, A. Kazmierowski, J. Davidson, and P. M. Fernandes, “Agent-based testing of extended reality systems,” Porto, Portugal, Oct. 2020, pp. 414–417.
- T. Braud, L.-H. Lee, A. Y. Alhilal, C. B. Fernandez, and P. Hui, “Dios - an extended reality operating system for the metaverse,” ArXiv, vol. abs/2201.03256, Jan. 2022.
- Y. Shao, N. Lessio, and A. Morris, “Iot avatars: Mixed reality hybrid objects for core ambient intelligent environments,” Procedia Computer Science, 2019.
- A. Dünser and M. Billinghurst, “Evaluating augmented reality systems,” in Handbook of Augmented Reality, 2011.
- T. Tsang and A. Morris, “A hybrid quality-of-experience taxonomy for mixed reality iot (xri) systems,” Melbourne, Australia, Apr. 2021, pp. 1809–1816.
- A. Morris, J. Guan, and A. Azhar, “An xri mixed-reality internet-of-things architectural framework toward immersive and adaptive smart environments,” Bari, Italy, Oct. 2021, pp. 68–74.
- L. Oppermann, F. P. Buchholz, and Y. Uzun, “Industrial metaverse: Supporting remote maintenance with avatars and digital twins in collaborative xr environments,” Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, Apr. 2023.
- B. H. Kantowitz, “Mental workload,” Encyclopedia of Behavioral Medicine, 2020.
- L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar, C. Bermejo, and P. Hui, “All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda,” ArXiv, vol. abs/2110.05352, 2021.
- T. J. Chua, W. li Yu, and J. Zhao, “Resource allocation for mobile metaverse with the internet of vehicles over 6g wireless communications: A deep reinforcement learning approach,” ArXiv, vol. abs/2209.13425, 2022.
- H. Kwon, K. Nair, J. Seo, J. Yik, D. Mohapatra, D. Zhan, J. Song, P. L. Capak, P. Zhang, P. Vajda, C. R. Banbury, M. Mazumder, L. Lai, A. Sirasao, T. Krishna, H. Khaitan, V. Chandra, and V. J. Reddi, “Xrbench: An extended reality (xr) machine learning benchmark suite for the metaverse,” ArXiv, vol. abs/2211.08675, 2022.
- C. Warin and D. Reinhardt, “Vision: Usable privacy for xr in the era of the metaverse,” Proceedings of the 2022 European Symposium on Usable Security, 2022.
- N. Xi, J. Chen, F. Gama, M. Riar, and J. Hamari, “The challenges of entering the metaverse: An experiment on the effect of extended reality on workload,” Information Systems Frontiers, pp. 1 – 22, 2022.
- H. Zhu, “Metaaid: A flexible framework for developing metaverse applications via ai technology and human editing,” ArXiv, vol. abs/2204.01614, 2022.
- S. M. Wong, C.-W. Chen, T.-Y. Pan, H.-K. Chu, and M.-C. Hu, “Getwild: A vr editing system with ai-generated 3d object and terrain,” Proceedings of the 30th ACM International Conference on Multimedia, Oct. 2022.
- L. Yang, R. M. Radway, Y.-H. Chen, T. F. Wu, H. Liu, E. Ansari, V. Chandra, S. Mitra, and E. Beigné, “Three-dimensional stacked neural network accelerator architectures for ar/vr applications,” IEEE Micro, vol. 42, pp. 116–124, Nov. 2022.
- S. Badruddoja, R. Dantu, Y. He, M. A. Thompson, A. Salau, and K. Upadhyay, “Trusted ai with blockchain to empower metaverse,” 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA), pp. 237–244, 2022.
- O. Khalaj, M. B. Jamshidi, P. Hassas, M. Hosseininezhad, B. Maek, C. tadler, and J. Svoboda, “Metaverse and ai digital twinning of 42sicr steel alloys,” Mathematics, 2022.
- C. Ma, J. L. K. Wei, B. Liu, M. Ding, L. Yuan, Z. Han, and H. V. Poor, “Trusted AI in multi-agent systems: An overview of privacy and security for distributed learning,” CoRR, vol. abs/2202.09027, 2022.
- J. Yang, T. Liu, B. Jiang, H. Song, and W. Lu, “3d panoramic virtual reality video quality assessment based on 3d convolutional neural networks,” IEEE Access, vol. 6, pp. 38 669–38 682, 2018.
- C.-H. Yeh, C.-H. Huang, and L.-W. Kang, “Multi-scale deep residual learning-based single image haze removal via image decomposition,” IEEE Transactions on Image Processing, vol. 29, pp. 3153–3167, Dec. 2019.
- S. Satrasupalli, E. Daniel, and S. R. Guntur, “Single image haze removal based on transmission map estimation using encoder-decoder based deep learning architecture,” Optik, Dec. 2021.
- Q. Liu, L. Shi, L. Sun, J. Li, M. Ding, and F. Shu, “Path planning for uav-mounted mobile edge computing with deep reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5723–5728, Jan. 2020.
- J. Lee, A. Pastor, J.-I. Hwang, and G. J. Kim, “Predicting the torso direction from hmd movements for walk-in-place navigation through deep learning,” Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology, Dec. 2019.
- H. Du, Z. Li, D. T. Niyato, J. Kang, Z. Xiong, H. Huang, and S. Mao, “Generative ai-aided optimization for ai-generated content (aigc) services in edge networks,” ArXiv, vol. abs/2303.13052, Mar. 2023.
- M. Xu, D. T. Niyato, H. Zhang, J. Kang, Z. Xiong, S. Mao, and Z. Han, “Sparks of gpts in edge intelligence for metaverse: Caching and inference for mobile aigc services,” ArXiv, vol. abs/2304.08782, Apr. 2023.
- L.-H. Lee, P. Zhou, C. Zhang, and S. J. Hosio, “What if we have meta gpt? from content singularity to human-metaverse interaction in aigc era,” ArXiv, vol. abs/2304.07521, Apr. 2023.
- B. K. Wiederhold, “Treading carefully in the metaverse: The evolution of ai avatars,” Cyberpsychology, behavior and social networking, vol. 26 5, pp. 321–322, Jan. 2023.
- S. Mohseni, N. Zarei, and E. D. Ragan, “A multidisciplinary survey and framework for design and evaluation of explainable ai systems,” ACM Trans. Interact. Intell. Syst., vol. 11, pp. 24:1–24:45, 2018.
- J. Han and Y. Lee, “Explainable artificial intelligence-based competitive factor identification,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 16, pp. 1 – 11, 2021.
- M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. T. Niyato, Q. Yang, X. S. Shen, and C. Miao, “A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges,” ArXiv, vol. abs/2203.05471, 2022.
- X. Zhai, X. Chu, M. Wang, Z. Zhang, and Y. Dong, “Education metaverse: Innovations and challenges of the new generation of internet education formats,” Metaverse, May. 2022.
- S. E. Bibri and Z. Allam, “The metaverse as a virtual form of data-driven smart cities: the ethics of the hyper-connectivity, datafication, algorithmization, and platformization of urban society,” Computational Urban Science, vol. 2, Jun. 2022.
- J. N. Njoku, C. I. Nwakanma, G. C. Amaizu, and D. Kim, “Prospects and challenges of metaverse application in data‐driven intelligent transportation systems,” IET Intelligent Transport Systems, Aug. 2022.
- H. Wu, X. Tian, Y. Gong, X. Su, M. Li, and F. Xu, “Dapter: Preventing user data abuse in deep learning inference services,” Singapore, Singapore, Jun. 2021.
- R. Zhao, Y. Zhang, Y. Zhu, R. Lan, and Z. Hua, “Metaverse: Security and privacy concerns,” ArXiv, vol. abs/2203.03854, Mar. 2022.
- Z.-H. Pang, L.-Z. Fan, Z. Dong, Q.-L. Han, and G. Liu, “False data injection attacks against partial sensor measurements of networked control systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, pp. 149–153, Jan. 2022.
- H. Q. Guo, Z. Pang, J. Sun, and J. Li, “Detection of stealthy false data injection attacks against cyber-physical systems: A stochastic coding scheme,” Journal of Systems Science and Complexity, vol. 35, pp. 1668 – 1684, Aug. 2022.
- B. Bera, A. K. Das, M. S. Obaidat, P. Vijayakumar, K.-F. Hsiao, and Y. Park, “Ai-enabled blockchain-based access control for malicious attacks detection and mitigation in ioe,” IEEE Consumer Electronics Magazine, vol. 10, pp. 82–92, Sep. 2021.
- S. Ruj, M. Stojmenovic, and A. Nayak, “Decentralized access control with anonymous authentication of data stored in clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, pp. 384–394, Feb. 2014.
- M. Shen, A. Liu, G. Huang, N. N. Xiong, and H. Lu, “Attdc: An active and traceable trust data collection scheme for industrial security in smart cities,” IEEE Internet of Things Journal, vol. 8, pp. 6437–6453, Apr. 2021.
- A. M. Palacios, M. J. Gacto, and J. Alcalá-Fdez, “Mining fuzzy association rules from low-quality data,” Soft Computing, vol. 16, pp. 883–901, May. 2012.
- R. Duan, J. Liu, J. Zhou, P. Wang, and W. Liu, “An ensemble prognostic method of francis turbine units using low-quality data under variable operating conditions,” Sensors (Basel, Switzerland), vol. 22, Italian, Jan. 2022.
- B. Yang, Z. Liu, G. Duan, and J. Tan, “Mask2defect: A prior knowledge-based data augmentation method for metal surface defect inspection,” IEEE Transactions on Industrial Informatics, vol. 18, pp. 6743–6755, Oct. 2022.
- S. Suhail, R. Hussain, R. Jurdak, A. Oracevic, K. Salah, C. S. Hong, and R. Matuleviius, “Blockchain-based digital twins: Research trends, issues, and future challenges,” ACM Computing Surveys (CSUR), vol. 54, pp. 1 – 34, Mar. 2021.
- K. Peng, H. Huang, M. Bilal, and X. Xu, “Distributed incentives for intelligent offloading and resource allocation in digital twin driven smart industry,” IEEE Transactions on Industrial Informatics, vol. 19, pp. 3133–3143, Mar. 2023.
- W. Shen, T. Hu, C. Zhang, and S. Ma, “Secure sharing of big digital twin data for smart manufacturing based on blockchain,” Journal of Manufacturing Systems, Oct. 2021.
- Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen, “A survey on metaverse: Fundamentals, security, and privacy,” IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 319–352, 2023.
- S. Kim, W. Jo, and T. Shon, “Apad: Autoencoder-based payload anomaly detection for industrial ioe,” Appl. Soft Comput., vol. 88, p. 106017, Mar. 2020.
- S. Kwon, H. Yoo, and T. Shon, “Ieee 1815.1-based power system security with bidirectional rnn-based network anomalous attack detection for cyber-physical system,” IEEE Access, vol. 8, pp. 77 572–77 586, Apr. 2020.
- Y. Wang, Z. Su, N. Zhang, D. Liu, R. Xing, T. H. Luan, and X. S. Shen, “A survey on metaverse: Fundamentals, security, and privacy,” ArXiv, vol. abs/2203.02662, 2022.
- X. He, Q. Gong, Y. Chen, Y. Zhang, X. Wang, and X. Fu, “Datingsec: Detecting malicious accounts in dating apps using a content-based attention network,” IEEE Transactions on Dependable and Secure Computing, vol. 18, pp. 2193–2208, Sep. 2021.
- S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Z. Huq, “Algorithmic decision making and the cost of fairness,” Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Jan. 2017.
- A. Datta, S. Sen, and Y. Zick, “Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems,” California, USA, May. 2016, pp. 598–617.
- S. Cresci, M. Petrocchi, A. Spognardi, and S. Tognazzi, “Adversarial machine learning for protecting against online manipulation,” IEEE Internet Computing, vol. 26, pp. 47–52, Nov. 2021.
- D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A review on consensus algorithm of blockchain,” 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2567–2572, Oct. 2017.
- L. Wang, W. Chen, N. Jing, Z. Chang, B. Li, and W. Liu, “Acopalm: Acoustical palmprint-based noncontact identity authentication,” IEEE Transactions on Industrial Informatics, vol. 18, pp. 9122–9131, Dec. 2022.
- R. Duezguen, P. Mayer, S. Das, and M. Volkamer, “Towards secure and usable authentication for augmented and virtual reality head-mounted displays,” ArXiv, vol. abs/2007.11663, Jul. 2020.
- X. Deng, J. Li, C. Ma, K. Wei, L. Shi, M. Ding, and W. Chen, “Low-latency federated learning with dnn partition in distributed industrial iot networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 3, pp. 755–775, Oct. 2022.
- Z. Yin, Z. Wang, J. Li, M. Ding, W. Chen, and S. Jin, “Decentralized federated reinforcement learning for user-centric dynamic tfdd control,” IEEE Journal of Selected Topics in Signal Processing, vol. 17, no. 1, pp. 40–53, 2023.
- M. Al-Quraan, L. S. Mohjazi, L. Bariah, A. Centeno, A. Zoha, K. Arshad, K. Assaleh, S. H. Muhaidat, M. Debbah, and M. A. Imran, “Edge-native intelligence for 6g communications driven by federated learning: A survey of trends and challenges,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 7, pp. 957–979, Nov. 2021.
- Y. Chen, S. Huang, W. Gan, G. Huang, and Y. Wu, “Federated learning for metaverse: A survey,” Companion Proceedings of the ACM Web Conference 2023, 2023.
- W. Zhang, G. Zhang, and S. Mao, “Joint parallel offloading and load balancing for cooperative-mec systems with delay constraints,” IEEE Trans. Veh. Technol., vol. 71, no. 4, pp. 4249–4263, 2022.
- B. Tan, L. Ai, M. Wang, and J. Wang, “Toward A task offloading framework based on cyber digital twins in mobile edge computing,” IEEE Wirel. Commun., vol. 30, no. 3, pp. 157–162, 2023.
- W. C. Ng, W. Y. B. Lim, J. S. Ng, Z. Xiong, D. Niyato, and C. Miao, “Unified resource allocation framework for the edge intelligence-enabled metaverse,” in IEEE International Conference on Communications, ICC 2022, Seoul, Korea, May 16-20, 2022. IEEE, 2022, pp. 5214–5219.
- N. H. Chu, D. N. Nguyen, D. T. Hoang, K. T. Phan, E. Dutkiewicz, D. Niyato, and T. Shu, “Dynamic resource allocation for metaverse applications with deep reinforcement learning,” in IEEE Wireless Communications and Networking Conference, WCNC 2023, Glasgow, UK, March 26-29, 2023. IEEE, 2023, pp. 1–6.
- P. Yu, M. Yang, A. Xiong, Y. Ding, W. Li, X. Qiu, L. Meng, M. Kadoch, and M. Cheriet, “Intelligent-driven green resource allocation for industrial internet of things in 5g heterogeneous networks,” IEEE Trans. Ind. Informatics, vol. 18, no. 1, pp. 520–530, 2022.
- N. C. Luong, Q.-V. Pham, T. Huynh-The, V.-D. Nguyen, D. W. K. Ng, and S. Chatzinotas, “Edge computing for semantic communication enabled metaverse: An incentive mechanism design,” ArXiv, vol. abs/2212.06463, Dec. 2022.
- M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.-N. Liu, Y. Xiang, and R. H. Deng, “Crowdbc: A blockchain-based decentralized framework for crowdsourcing,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, pp. 1251–1266, Jun. 2019.
- Y. Han, D. T. Niyato, C. Leung, C. Miao, and D. I. Kim, “A dynamic resource allocation framework for synchronizing metaverse with iot service and data,” Oct. 2021, pp. 1196–1201.
- M. T. Rashid, D. Zhang, and D. Wang, “Edgestore: Towards an edge-based distributed storage system for emergency response,” in HPCC/SmartCity/DSS. IEEE, 2019, pp. 2543–2550.
- K. Poularakis, J. Llorca, A. M. Tulino, I. J. Taylor, and L. Tassiulas, “Joint service placement and request routing in multi-cell mobile edge computing networks,” in INFOCOM. IEEE, 2019, pp. 10–18.
- P. Liu, G. Xu, K. Yang, K. Wang, and X. Meng, “Jointly optimized energy-minimal resource allocation in cache-enhanced mobile edge computing systems,” IEEE Access, vol. 7, pp. 3336–3347, 2019.
- D. Zhang, Y. Ma, Y. Zhang, S. Lin, X. S. Hu, and D. Wang, “A real-time and non-cooperative task allocation framework for social sensing applications in edge computing systems,” in RTAS. IEEE Computer Society, 2018, pp. 316–326.
- L. M. Vaquero, F. Cuadrado, Y. Elkhatib, J. B. Bernabé, S. N. Srirama, and M. F. Zhani, “Research challenges in nextgen service orchestration,” Future Gener. Comput. Syst., vol. 90, pp. 20–38, 2019.
- Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Joint compute-caching-communication control for online data-intensive service delivery,” CoRR, vol. abs/2205.01944, 2022.
- D. Van-Huynh, S. R. Khosravirad, A. Masaracchia, O. A. Dobre, and T. Q. Duong, “Edge intelligence-based ultra-reliable and low-latency communications for digital twin-enabled metaverse,” IEEE Wirel. Commun. Lett., vol. 11, no. 8, pp. 1733–1737, 2022.
- P. A. Rospigliosi, “Metaverse or simulacra? roblox, minecraft, meta and the turn to virtual reality for education, socialisation and work,” Interactive Learning Environments, vol. 30, pp. 1 – 3, Jan. 2022.
- T. Li, C. Yang, Q. Yang, S. Zhou, H. Huang, and Z. Zheng, “Metaopera: A cross-metaverse interoperability protocol,” CoRR, vol. abs/2302.01600, 2023.
- T. Huynh-The, T. R. Gadekallu, W. Wang, G. Yenduri, P. Ranaweera, Q. Pham, D. B. da Costa, and M. Liyanage, “Blockchain for the metaverse: A review,” Future Gener. Comput. Syst., vol. 143, pp. 401–419, 2023.
- S. Ghirmai, D. Mebrahtom, M. Aloqaily, M. Guizani, and M. Debbah, “Self-sovereign identity for trust and interoperability in the metaverse,” CoRR, vol. abs/2303.00422, 2023.
- F. Khan, R. L. Kumar, M. H. Abidi, S. Kadry, H. Alkhalefah, and M. K. Aboudaif, “Federated split learning model for industry 5.0: A data poisoning defense for edge computing,” Electronics, 2022.
- O. Hashash, C. Chaccour, W. Saad, K. Sakaguchi, and T. Yu, “Towards a decentralized metaverse: Synchronized orchestration of digital twins and sub-metaverses,” CoRR, vol. abs/2211.14686, 2022.
- U. Jaimini, T. Zhang, G. O. Brikis, and A. P. Sheth, “imetaversekg: Industrial metaverse knowledge graph to promote interoperability in design and engineering applications,” IEEE Internet Comput., vol. 26, no. 6, pp. 59–67, 2022.
- T. Li, C.-M. Yang, Q. Yang, S. Zhou, H. Huang, and Z. Zheng, “Metaopera: A cross-metaverse interoperability protocol,” ArXiv, vol. abs/2302.01600, Feb. 2023.
- B. S. Rawal, A. Mentges, and S. Ahmad, “The rise of metaverse and interoperability with split-protocol,” San Diego, CA, USA, Aug. 2022, pp. 192–199.
- J.-S. Choi and H.-G. Byun, “A case study to standardize odor metadata obtained from coffee aroma based on e-nose using iso/iec 23005 (mpeg-v) for olfactory-enhanced multimedia,” JOURNAL OF SENSOR SCIENCE AND TECHNOLOGY, 2021.
- K. Yoon, S.-K. Kim, S. Jeong, and J.-H. Choi, “Interfacing cyber and physical worlds: Introduction to ieee 2888 standards,” 2021 IEEE International Conference on Intelligent Reality (ICIR), pp. 49–50, May. 2021.
- “Ieee draft standard for general requirements for identity framework for metaverse,” IEEE P3812.1/D1.1, March 2023, pp. 1–23, 2023.
- “Ieee draft standard for augmented reality on mobile devices: General requirements for software framework, components, and integration,” IEEE P2048.101/D4.0, January 2023, pp. 1–34, 2023.
- T. Braud, C. B. Fernandez, and P. Hui, “Scaling-up ar: University campus as a physical-digital metaverse,” Christchurch, New Zealand, Mar. 2022, pp. 169–175.
- T. Huynh-The, Q.-V. Pham, X.-Q. Pham, T. T. Nguyen, Z. Han, and D.-S. Kim, “Artificial intelligence for the metaverse: A survey,” Eng. Appl. Artif. Intell., vol. 117, p. 105581, Feb. 2022.
- A. M. Aburbeian, A. Y. Owda, and M. Owda, “A technology acceptance model survey of the metaverse prospects,” AI, Apr. 2022.
- S. Park and S. Kim, “Identifying world types to deliver gameful experiences for sustainable learning in the metaverse,” Sustainability, Jan. 2022.
- W. Suh and S. Ahn, “Utilizing the metaverse for learner-centered constructivist education in the post-pandemic era: An analysis of elementary school students,” Journal of Intelligence, vol. 10, Mar. 2022.
- M. Golf-Pape, J. Heller, T. Hilken, M. B. Chylinski, K. de Ruyter, D. I. Keeling, and D. Mahr, “Embracing falsity through the metaverse: The case of synthetic customer experiences,” Business Horizons, 2022.
- D.-I. D. Han, Y. Bergs, and N. Moorhouse, “Virtual reality consumer experience escapes: preparing for the metaverse,” Virtual Reality, vol. 26, pp. 1443 – 1458, 2022.
- Y. Shao, J. Li, M. Ding, K. Wei, C. Ma, L. Shi, W. Chen, and S. Jin, “Design of anti-plagiarism mechanisms in decentralized federated learning,” IEEE Trans. Serv. Comput., Early Access, Mar. 2024.
- X. Zhang, Y. Chen, L. Hu, and Y. Wang, “The metaverse in education: Definition, framework, features, potential applications, challenges, and future research topics,” Frontiers in Psychology, vol. 13, 2022.
- S. J. Kwon, J. Kim, J. Bae, K. M. Yoo, J.-H. Kim, B. Park, B. Kim, J.-W. Ha, N. Sung, and D. Lee, “Alphatuning: Quantization-aware parameter-efficient adaptation of large-scale pre-trained language models,” ArXiv, vol. abs/2210.03858, Oct. 2022.
- N. Ding, Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, S. Hu, Y. Chen, C.-M. Chan, W. Chen, J. Yi, W. Zhao, X. Wang, Z. Liu, H. Zheng, J. Chen, Y. Liu, J. Tang, J. Li, and M. Sun, “Parameter-efficient fine-tuning of large-scale pre-trained language models,” Nature Machine Intelligence, vol. 5, pp. 220–235, Mar. 2023.
- Y. Cui, “A cross-chain protocol based on quantum teleportation for underlying architecture of metaverse,” Wuhan, China, Apr. 2022, pp. 508–512.
- Y. Ren, R. Xie, F. Yu, T. Huang, and Y. jie Liu, “Quantum collective learning and many-to-many matching game in the metaverse for connected and autonomous vehicles,” IEEE Transactions on Vehicular Technology, vol. 71, pp. 12 128–12 139, Nov. 2022.
- R. Benjamins, Y. R. Viñuela, and C. Alonso, “Social and ethical challenges of the metaverse,” AI Ethics, vol. 3, no. 3, pp. 689–697, 2023.