Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Asymptotic Properties of the Extreme Eigenvectors of High-dimensional Generalized Spiked Covariance Model (2405.08524v1)

Published 14 May 2024 in math.ST and stat.TH

Abstract: In this paper, we investigate the asymptotic behaviors of the extreme eigenvectors in a general spiked covariance matrix, where the dimension and sample size increase proportionally. We eliminate the restrictive assumption of the block diagonal structure in the population covariance matrix. Moreover, there is no requirement for the spiked eigenvalues and the 4th moment to be bounded. Specifically, we apply random matrix theory to derive the convergence and limiting distributions of certain projections of the extreme eigenvectors in a large sample covariance matrix within a generalized spiked population model. Furthermore, our techniques are robust and effective, even when spiked eigenvalues differ significantly in magnitude from nonspiked ones. Finally, we propose a powerful statistic for hypothesis testing for the eigenspaces of covariance matrices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.