Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Complexity Measures of Pseudo-Random Sequences (2405.08479v3)

Published 14 May 2024 in cs.CR

Abstract: Since the introduction of the Kolmogorov complexity of binary sequences in the 1960s, there have been significant advancements in the topic of complexity measures for randomness assessment, which are of fundamental importance in theoretical computer science and of practical interest in cryptography. This survey reviews notable research from the past four decades on the linear, quadratic and maximum-order complexities of pseudo-random sequences and their relations with Lempel-Ziv complexity, expansion complexity, 2-adic complexity, and correlation measures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. R. V. Mises, “Grundlagen der Wahrscheinlichkeitsrechnung,” Mathematische Zeitschrift, vol. 5, no. 1, pp. 52–99, Mar. 1919.
  2. A. Church, “On the concept of a random sequence,” Bulletin of the American Mathematical Society, vol. 46, no. 2, pp. 130–135, Feb. 1940.
  3. P. Martin-Löf, “The definition of random sequences,” Inforomation and Control, vol. 9, no. 6, pp. 602–619, Dec. 1966.
  4. A. N. Kolmogorov, “Three approaches to the quantitative definition of information*,” International Journal of Computer Mathematics, vol. 2, no. 1–4, pp. 157–168, Jan. 1968.
  5. C. Schnorr, “Process complexity and effective random tests,” Journal of Computer and System Sciences, vol. 7, no. 4, pp. 376–388, Aug. 1973.
  6. J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Transactions on Information Theory, vol. 15, no. 1, pp. 122–127, Jan. 1969.
  7. R. A. Rueppel, “Linear complexity and random sequences,” in Advances in Cryptology — EUROCRYPT’ 85, F. Pichler, Ed.   Berlin, Heidelberg: Springer Berlin Heidelberg, 1986, pp. 167–188.
  8. H. Niederreiter, “The probabilistic theory of linear complexity,” in Advances in Cryptology — EUROCRYPT ’88, ser. Lecture Notes in Computer Science.   Springer Berlin Heidelberg, 1988, Book Section, pp. 191–209.
  9. ——, “Linear complexity and related complexity measures for sequences,” in Progress in Cryptology - INDOCRYPT 2003, ser. Lecture Notes in Computer Science.   Springer, 2003, Book Section, pp. 1–17.
  10. L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, S. D. Leigh, M. Levenson, M. Vangel, N. A. Heckert, and D. L. Banks, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” NIST, Sep. 2010.
  11. C. J. A. Jansen, “Investigations on nonlinear streamcipher systems: construction and evaluation methods,” phdthesis, Delft University of Technology, 1989.
  12. A. Klapper and M. Goresky, “Feedback shift registers, 2-adic span, and combiners with memory,” Journal of Cryptology, vol. 10, no. 2, pp. 111–147, Mar. 1997.
  13. A. H. Chan and R. A. Games, “On the quadratic spans of DeBruijn sequences,” IEEE Transactions on Information Theory, vol. 36, no. 4, pp. 822–829, 1990.
  14. C. Diem, “On the use of expansion series for stream ciphers,” LMS Journal of Computation and Mathematics, vol. 15, pp. 326–340, Sep. 2012.
  15. A. Topuzoğlus and A. Winterhof, “Pseudorandom sequences,” in Topics in Geometry, Coding Theory and Cryptography, A. Garcia and H. Stichtenoth, Eds.   Springer, 2006, pp. 135–166.
  16. C. Xing and K. Y. Lam, “Sequences with almost perfect linear complexity profiles and curves over finite fields,” IEEE Transactions on Information Theory, vol. 45, no. 4, pp. 1267–1270, May 1999.
  17. C. Xing, K. Y. Lam, and Z. Wei, “A Class of Explicit Perfect Multi-sequences,” in Advances in Cryptology - ASIACRYPT’99.   Berlin, Germany: Springer, 1999, pp. 299–305.
  18. H. Niederreiter and M. Vielhaber, “An algorithm for shifted continued fraction expansions in parallel linear time,” Theoretical Computer Science, vol. 226, no. 1, pp. 93–104, Sep. 1999.
  19. H. Niederreiter, “Some computable complexity measures for binary sequences,” in Sequences and their Applications.   Springer London, 1999, pp. 67–78.
  20. J. L. Massey and S. Serconek, “Linear complexity of periodic sequences: A general theory,” in Advances in Cryptology — CRYPTO ’96, N. Koblitz, Ed.   Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 358–371.
  21. ——, “A Fourier Transform Approach to the Linear Complexity of Nonlinearly Filtered Sequences,” in Advances in Cryptology - CRYPTO’94.   Berlin, Germany: Springer, Jul. 1994, pp. 332–340.
  22. C. Ding, T. Hesseseth, and W. Shan, “On the linear complexity of Legendre sequences,” IEEE Transactions on Information Theory, vol. 44, no. 3, pp. 1276–1278, May 1998.
  23. W. Meidl and A. Winterhof, “Lower bounds on the linear complexity of the discrete logarithm in finite fields,” IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 2807–2811, Nov. 2001.
  24. T. Helleseth, S.-H. Kim, and J.-S. No, “Linear complexity over G⁢F⁢(p)𝐺𝐹𝑝GF(p)italic_G italic_F ( italic_p ) and trace representation of Lempel-Cohn-Eastman sequences,” in Proceedings IEEE International Symposium on Information Theory.   IEEE, 2003.
  25. W. Meidl and H. Niederreiter, “On the expected value of the linear complexity and the k𝑘kitalic_k-error linear complexity of periodic sequences,” IEEE Transactions on Information Theory, vol. 48, no. 11, pp. 2817–2825, 2002.
  26. A. H. Chan and R. A. Games, “On the quadratic spans of periodic sequences,” in Advances in Cryptology — CRYPTO’ 89 Proceedings, ser. Lecture Notes in Computer Science.   Springer, 1990, Book Section, pp. 82–89.
  27. A. Youssef and G. Gong, “On the quadratic span of binary sequences,” in Proceeding of the 20th Biennial Symposium on Communications, Queen’s university, 2000, pp. 159–163.
  28. P. Rizomiliotis, N. Kolokotronis, and N. Kalouptsidis, “On the quadratic span of binary sequences,” IEEE Transactions on Information Theory, vol. 51, no. 5, pp. 1840–1848, Apr. 2005.
  29. C. Jansen and D. Boekee, “The shortest feedback shift register that can generate a given sequence,” in Advances in Cryptology – CRYPTO’89 Proceedings, ser. Lecture Notes in Computer Science.   Springer, 1990, Book Section, pp. 90–99.
  30. C. Jansen, “The maximum order complexity of sequence ensembles,” in Advances in Cryptology — EUROCRYPT ’91, ser. Lecture Notes in Computer Science.   Springer, 1991, Book Section, pp. 153–159.
  31. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. M. McConnell, “Linear size finite automata for the set of all subwords of a word - an outline of results,” Bulletin of the EATCS, vol. 21, pp. 12–20, 1983.
  32. P. Rizomiliotis and N. Kalouptsidis, “Results on the nonlinear span of binary sequences,” IEEE Transactions on Information Theory, vol. 51, no. 4, pp. 1555–1563, Apr. 2005.
  33. K. Limniotis, N. Kolokotronis, and N. Kalouptsidis, “On the nonlinear complexity and Lempel–Ziv complexity of finite length sequences,” IEEE Transactions on Information Theory, vol. 53, no. 11, pp. 4293–4302, 2007.
  34. D. Erdmann and S. Murphy, “An approximate distribution for the maximum order complexity,” Designs, Codes and Cryptography, vol. 10, no. 3, pp. 325–339, Mar. 1997.
  35. Y. Luo, C. Xing, and L. You, “Construction of Sequences With High Nonlinear Complexity From Function Fields,” IEEE Transactions on Information Theory, vol. 63, no. 12, pp. 7646–7650, Aug. 2017.
  36. S. Liang, X. Zeng, Z. Xiao, and Z. Sun, “Binary sequences with length n and nonlinear complexity not less than n/2𝑛2n/2italic_n / 2,” IEEE Transactions on Information Theory, vol. 69, no. 12, pp. 8116–8125, Sep. 2023.
  37. P. Rizomiliotis, “Constructing periodic binary sequences with maximum nonlinear span,” IEEE Transactions on Information Theory, vol. 52, no. 9, pp. 4257–4261, Aug. 2006.
  38. Z. Sun, X. Zeng, C. Li, and T. Helleseth, “Investigations on Periodic Sequences With Maximum Nonlinear Complexity,” IEEE Transactions on Information Theory, vol. 63, no. 10, pp. 6188–6198, Jun. 2017.
  39. Q. Yuan, C. Li, X. Zeng, T. Helleseth, and D. He, “Further investigations on nonlinear complexity of periodic binary sequences,” IEEE Transactions on Information Theory, pp. 1–1, 2024.
  40. A. Lempel and J. Ziv, “On the Complexity of Finite Sequences,” IEEE Transactions on Information Theory, vol. 22, no. 1, pp. 75–81, Jan. 1976.
  41. L. Merai, H. Niederreiter, and A. Winterhof, “Expansion complexity and linear complexity of sequences over finite fields,” Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences, vol. 9, no. 4, pp. 501–509, 2017. [Online]. Available: ¡Go to ISI¿://WOS:000410834000005 https://link.springer.com/content/pdf/10.1007/s12095-016-0189-2.pdf
  42. L. Işık and A. Winterhof, “Maximum-order complexity and correlation measures,” Cryptography, vol. 1, no. 1, p. 7, May 2017.
  43. Z. Chen, A. I. Gómez, D. Gómez-Pérez, and A. Tirkel, “Correlation measure, linear complexity and maximum order complexity for families of binary sequences,” Finite Fields and Their Applications, vol. 78, p. 101977, Feb. 2022.
  44. H. Niederreiter, “Periodic sequences with large k𝑘kitalic_k-error linear complexity,” IEEE Transactions on Information Theory, vol. 49, no. 2, pp. 501–505, Feb. 2003.
  45. A. H. Chan, R. A. Games, and E. L. Key, “On the complexities of de bruijn sequences,” Journal of Combinatorial Theory, Series A, vol. 33, no. 3, pp. 233–246, Nov. 1982.
  46. R. A. Games, “There are no DeBruijn sequences of span n𝑛nitalic_n with complexity 2n−1+n+1superscript2𝑛1𝑛12^{n-1}+n+12 start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT + italic_n + 1,” Journal of Combinatorial Theory, Series A, vol. 34, no. 2, pp. 248–251, Mar. 1983.
  47. G. Mayhew and S. Golomb, “Linear spans of modified bruijn sequences,” IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 1166–1167, 1990.
  48. G. M. Kyureghyan, “Minimal polynomials of the modified DeBruijn sequences,” Discrete Applied Mathematics, vol. 156, no. 9, pp. 1549–1553, May 2008.
  49. Y.-J. Dong, T. Tian, W.-F. Qi, and Z.-X. Wang, “New results on the minimal polynomials of modified de bruijn sequences,” Finite Fields and Their Applications, vol. 60, p. 101583, Nov. 2019.
  50. H.-Y. Wang, Q.-X. Zheng, Z.-X. Wang, and W.-F. Qi, “The minimal polynomials of modified DeBruijn sequences revisited,” Finite Fields and Their Applications, vol. 68, p. 101735, Dec. 2020.
  51. L. H. Khachatrian, “The lower bound of the quadratic spans of DeBruijn sequences,” Designs, Codes and Cryptography, vol. 3, no. 1, pp. 29–32, Mar. 1993.
  52. A. Klapper and M. Goresky, “Cryptanalysis based on 2-adic rational approximation,” in Advances in Cryptology — CRYPTO’ 95.   Springer Berlin Heidelberg, 1995, pp. 262–273.
  53. Z. Chen, Z. Chen, J. Obrovsky, and A. Winterhof, “Maximum-order complexity and 2222-adic complexity,” arXiv, 2023.
  54. J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, May 1977.
  55. ——, “Compression of individual sequences via variable-rate coding,” IEEE Transactions on Information Theory, vol. 24, no. 5, pp. 530–536, Sep. 1978.
  56. Z. Sun, X. Zeng, C. Li, Y. Zhang, and L. Yi, “The expansion complexity of ultimately periodic sequences over finite fields,” IEEE Transactions on Information Theory, vol. 67, no. 11, pp. 7550–7560, Nov. 2021.
  57. N. Brandstätter and A. Winterhof, “Linear complexity profile of binary sequences with small correlation measure,” Periodica Mathematica Hungarica, vol. 52, no. 2, pp. 1–8, Jun. 2006.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com