Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributionally Robust Degree Optimization for BATS Codes (2405.08194v1)

Published 13 May 2024 in cs.IT and math.IT

Abstract: Batched sparse (BATS) code is a network coding solution for multi-hop wireless networks with packet loss. Achieving a close-to-optimal rate relies on an optimal degree distribution. Technical challenges arise from the sensitivity of this distribution to the often empirically obtained rank distribution at the destination node. Specifically, if the empirical distribution overestimates the channel, BATS codes experience a significant rate degradation, leading to unstable rates across different runs and hence unpredictable transmission costs. Confronting this unresolved obstacle, we introduce a formulation for distributionally robust optimization in degree optimization. Deploying the resulting degree distribution resolves the instability of empirical rank distributions, ensuring a close-to-optimal rate, and unleashing the potential of applying BATS codes in real-world scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.
  2. R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.
  3. T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random linear network coding approach to multicast,” IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.
  4. F. Chen, T. Xiang, Y. Yang, and S. S. M. Chow, “Secure cloud storage meets with secure network coding,” IEEE Trans. Computers, vol. 65, no. 6, pp. 1936–1948, 2016.
  5. P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Allerton Conf. on Communication, Control, and Computing, 2003, pp. 40–49.
  6. S. Wunderlich, F. Gabriel, S. Pandi, F. H. P. Fitzek, and M. Reisslein, “Caterpillar RLNC (CRLNC): A practical finite sliding window RLNC approach,” IEEE Access, vol. 5, pp. 20 183–20 197, 2017.
  7. C. de Alwis, H. Kodikara Arachchi, A. Fernando, and A. Kondoz, “Towards minimising the coefficient vector overhead in random linear network coding,” in ICASSP, 2013, pp. 5127–5131.
  8. D. Silva, “Minimum-overhead network coding in the short packet regime,” in NetCod, 2012, pp. 173–178.
  9. D. Gligoroski, K. Kralevska, and H. Øverby, “Minimal header overhead for random linear network coding,” in ICCW, 2015, pp. 680–685.
  10. D. Silva, W. Zeng, and F. R. Kschischang, “Sparse network coding with overlapping classes,” in NetCod, 2009, pp. 74–79.
  11. A. Heidarzadeh and A. H. Banihashemi, “Overlapped chunked network coding,” in ITW, 2010, pp. 1–5.
  12. Y. Li, E. Soljanin, and P. Spasojevic, “Effects of the generation size and overlap on throughput and complexity in randomized linear network coding,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 1111–1123, Feb. 2011.
  13. B. Tang, S. Yang, Y. Yin, B. Ye, and S. Lu, “Expander graph based overlapped chunked codes,” in ISIT, 2012, pp. 2451–2455.
  14. K. Mahdaviani, M. Ardakani, H. Bagheri, and C. Tellambura, “Gamma codes: A low-overhead linear-complexity network coding solution,” in NetCod, 2012, pp. 125–130.
  15. B. Tang and S. Yang, “An LDPC approach for chunked network codes,” IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 605–617, Feb. 2018.
  16. S. Yang and R. W. Yeung, “Batched sparse codes,” IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5322–5346, Sep. 2014.
  17. M. Luby, “LT codes,” in FOCS, 2002, pp. 271–282.
  18. X. Xu, Y. L. Guan, Y. Zeng, and C.-C. Chui, “Quasi-universal BATS code,” IEEE Trans. Veh. Technol., vol. 66, no. 4, pp. 3497–3501, 2017.
  19. H. Zhang, K. Sun, Q. Huang, Y. Wen, and D. Wu, “FUN coding: Design and analysis,” IEEE/ACM Trans. Netw., vol. 24, no. 6, pp. 3340–3353, Dec. 2016.
  20. H. H. F. Yin and M. Tahernia, “Multi-phase recoding for batched network coding,” in ITW, 2022, pp. 25–30.
  21. F. Lin, X. Fang, and Z. Gao, “Distributionally robust optimization: A review on theory and applications,” Numerical Algebra, Control and Optimization, vol. 12, no. 1, pp. 159–212, 2022.
  22. R. Gao and A. Kleywegt, “Distributionally robust stochastic optimization with Wasserstein distance,” Math. Oper. Res., vol. 48, no. 2, pp. 603–655, May 2023.
  23. J. Blanchet and K. Murthy, “Quantifying distributional model risk via optimal transport,” Math. of Operations Research, vol. 44, no. 2, pp. 565–600, 2019.
  24. J. Blanchet, Y. Kang, and K. Murthy, “Robust Wasserstein profile inference and applications to machine learning,” Journal of Applied Probability, vol. 56, no. 3, pp. 830–857, 2019.
  25. L. Zhang, J. Yang, and R. Gao, “A simple and general duality proof for Wasserstein distributionally robust optimization,” arXiv:2205.00362, 2022.
  26. H. Rahimian, G. Bayraksan, and T. Homem-de Mello, “Identifying effective scenarios in distributionally robust stochastic programs with total variation distance,” Math. Program., vol. 173, no. 1–2, pp. 393–430, Jan. 2019.
  27. F. Farokhi, “Distributionally robust optimization with noisy data for discrete uncertainties using total variation distance,” IEEE Control Syst. Lett., vol. 7, pp. 1494–1499, Apr. 2023.
  28. A. Dixit, M. Ahmadi, and J. W. Burdick, “Distributionally robust model predictive control with total variation distance,” IEEE Control Systems Letters, vol. 6, pp. 3325–3330, Jun. 2022.
  29. A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006.
  30. H. H. F. Yin, H. W. H. Wong, M. Tahernia, and J. Qing, “Packet size optimization for batched network coding,” in ISIT, 2022, pp. 1584–1589.
  31. S. Yang and R. W. Yeung, “Network communication protocol design from the perspective of batched network coding,” IEEE Commun. Mag., vol. 60, no. 1, pp. 89–93, Jan. 2022.
  32. H. H. F. Yin, R. W. Yeung, and S. Yang, “A protocol design paradigm for batched sparse codes,” Entropy, vol. 22, no. 7, Jul. 2020, Art. no. 790.
  33. S. Yang, R. W. Yeung, J. H. F. Cheung, and H. H. F. Yin, “BATS: Network coding in action,” in Allerton Conf., 2014, pp. 1204–1211.
  34. Q. Zhou, S. Yang, H. H. F. Yin, and B. Tang, “On BATS codes with variable batch sizes,” IEEE Commun. Lett., vol. 21, no. 9, pp. 1917–1920, Sep. 2017.
  35. H. H. F. Yin, K. H. Ng, X. Wang, and Q. Cao, “On the minimum delay of block interleaver for batched network codes,” in ISIT, 2019, pp. 1957–1961.
  36. H. H. F. Yin, K. H. Ng, X. Wang, Q. Cao, and L. K. L. Ng, “On the memory requirements of block interleaver for batched network codes,” in ISIT, 2020, pp. 1658–1663.
  37. Z. Zhou, C. Li, S. Yang, and X. Guang, “Practical inner codes for BATS codes in multi-hop wireless networks,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2751–2762, Mar. 2019.
  38. H. H. F. Yin, S. Yang, Q. Zhou, and L. M. L. Yung, “Adaptive recoding for BATS codes,” in ISIT, 2016, pp. 2349–2353.
  39. B. Tang, S. Yang, B. Ye, S. Guo, and S. Lu, “Near-optimal one-sided scheduling for coded segmented network coding,” IEEE Trans. Comput., vol. 65, no. 3, pp. 929–939, Mar. 2016.
  40. X. Xu, Y. L. Guan, and Y. Zeng, “Batched network coding with adaptive recoding for multi-hop erasure channels with memory,” IEEE Trans. Commun., vol. 66, no. 3, pp. 1042–1052, Mar. 2018.
  41. H. H. F. Yin, B. Tang, K. H. Ng, S. Yang, X. Wang, and Q. Zhou, “A unified adaptive recoding framework for batched network coding,” IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 4, pp. 1150–1164, Dec. 2021.
  42. H. H. F. Yin, S. Yang, Q. Zhou, L. M. L. Yung, and K. H. Ng, “BAR: Blockwise adaptive recoding for batched network coding,” Entropy, vol. 25, no. 7, p. 1054, Jul. 2023.
  43. J. Wang, Z. Jia, H. H. F. Yin, and S. Yang, “Small-sample inferred adaptive recoding for batched network coding,” in ISIT, 2021, pp. 1427–1432.
  44. J. Wang, T. Bozkus, Y. Xie, and U. Mitra, “Reliable adaptive recoding for batched network coding with burst-noise channels,” in ACSSC, 2023, pp. 220–224.
  45. A. Shokrollahi and M. Luby, “Raptor codes,” Found. Trends Commun. Inf. Theory, vol. 6, no. 3-4, pp. 213–322, 2009.
  46. S. Yang, S.-W. Ho, J. Meng, and E.-H. Yang, “Capacity analysis of linear operator channels over finite fields,” IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4880–4901, Aug. 2014.
  47. S. Yang and Q. Zhou, “Tree analysis of BATS codes,” IEEE Commun. Lett., vol. 20, no. 1, pp. 37–40, Jan. 2016.
  48. J. Yang, Z. Shi, C. Wang, and J. Ji, “Design of optimized sliding-window BATS codes,” IEEE Commun. Lett., vol. 23, no. 3, pp. 410–413, Mar. 2019.
  49. X. Xu, Y. Zeng, Y. L. Guan, and L. Yuan, “Expanding-window BATS code for scalable video multicasting over erasure networks,” IEEE Trans. Multim., vol. 20, no. 2, pp. 271–281, Feb. 2018.
  50. X. Xu, Y. Zeng, Y. L. Guan, and L. Yuan, “BATS code with unequal error protection,” in ICCS, 2016.
  51. L. Mao and S. Yang, “Efficient binary batched network coding employing partial recovery,” in ISIT, 2024.
  52. S. Singh, “Estimating probability distributions and their properties,” Ph.D. dissertation, Carnegie Mellon University, Aug. 2019.
  53. M. Sommerfeld and A. Munk, “Inference for empirical Wasserstein distances on finite spaces,” Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 80, no. 1, pp. 219–238, Jan. 2018.
  54. C. L. Canonne, “A short note on learning discrete distributions,” arXiv:2002.11457, Feb. 2020.
Citations (2)

Summary

We haven't generated a summary for this paper yet.