Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite-valued Streaming String Transducers (2405.08171v6)

Published 13 May 2024 in cs.FL

Abstract: A transducer is finite-valued if for some bound k, it maps any given input to at most k outputs. For classical, one-way transducers, it is known since the 80s that finite valuedness entails decidability of the equivalence problem. This decidability result is in contrast to the general case, which makes finite-valued transducers very attractive. For classical transducers, it is also known that finite valuedness is decidable and that any k-valued finite transducer can be decomposed as a union of k single-valued finite transducers. In this paper, we extend the above results to copyless streaming string transducers (SSTs), answering questions raised by Alur and Deshmukh in 2011. SSTs strictly extend the expressiveness of one-way transducers via additional variables that store partial outputs. We prove that any k-valued SST can be effectively decomposed as a union of k (single-valued) deterministic SSTs. As a corollary, we obtain equivalence of SSTs and two-way transducers in the finite-valued case (those two models are incomparable in general). Another corollary is an elementary upper bound for checking equivalence of finite-valued SSTs. The latter problem was already known to be decidable, but the proof complexity was unknown (it relied on Ehrenfeucht's conjecture). Finally, our main result is that finite valuedness of SSTs is decidable. The complexity is PSpace, and even PTime when the number of variables is fixed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. M.H. Albert and J. Lawrence. A proof of Ehrenfeucht’s conjecture. Theor. Comput. Sci., 41(1):121–123, 1985.
  2. Expressiveness of streaming string transducers. In Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010. URL: \urlhttps://doi.org/10.4230/LIPIcs.FSTTCS.2010.1, \hrefhttps://doi.org/10.4230/LIPICS.FSTTCS.2010.1 \pathdoi:10.4230/LIPICS.FSTTCS.2010.1.
  3. Streaming transducers for algorithmic verification of single-pass list-processing programs. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 599–610. ACM, 2011. \hrefhttps://doi.org/10.1145/1926385.1926454 \pathdoi:10.1145/1926385.1926454.
  4. Streaming tree transducers. J. ACM, 64(5):31:1–31:55, 2017. \hrefhttps://doi.org/10.1145/3092842 \pathdoi:10.1145/3092842.
  5. Nondeterministic streaming string transducers. In Luca Aceto, Monika Henzinger, and Jirí Sgall, editors, Automata, Languages and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II, volume 6756 of Lecture Notes in Computer Science, pages 1–20. Springer, 2011. \hrefhttps://doi.org/10.1007/978-3-642-22012-8_1 \pathdoi:10.1007/978-3-642-22012-8_1.
  6. Composing copyless streaming string transducers. CoRR, abs/2209.05448:1–21, 2022. URL: \urlhttps://doi.org/10.48550/arXiv.2209.05448, \hrefhttp://arxiv.org/abs/2209.05448 \patharXiv:2209.05448, \hrefhttps://doi.org/10.48550/ARXIV.2209.05448 \pathdoi:10.48550/ARXIV.2209.05448.
  7. Regular transformations of infinite strings. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 65–74. IEEE Computer Society, 2012. \hrefhttps://doi.org/10.1109/LICS.2012.18 \pathdoi:10.1109/LICS.2012.18.
  8. Automatic structures. In Proceedings of the 15th IEEE Symposium on Logic in Computer Science, LICS 2000, pages 51–62. IEEE Computer Society Press, 2000.
  9. Mikolaj Bojanczyk. The hilbert method for transducer equivalence. ACM SIGLOG News, 6(1):5–17, 2019. \hrefhttps://doi.org/10.1145/3313909.3313911 \pathdoi:10.1145/3313909.3313911.
  10. Mikolaj Bojanczyk. Transducers of polynomial growth. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 1:1–1:27. ACM, 2022. \hrefhttps://doi.org/10.1145/3531130.3533326 \pathdoi:10.1145/3531130.3533326.
  11. Mikolaj Bojanczyk. On the growth rates of polyregular functions. In LICS, pages 1–13. ACM, 2023. \hrefhttps://doi.org/10.1109/LICS56636.2023.10175808 \pathdoi:10.1109/LICS56636.2023.10175808.
  12. String-to-string interpretations with polynomial-size output. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 106:1–106:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: \urlhttps://doi.org/10.4230/LIPIcs.ICALP.2019.106, \hrefhttps://doi.org/10.4230/LIPICS.ICALP.2019.106 \pathdoi:10.4230/LIPICS.ICALP.2019.106.
  13. Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications. Cambridge University Press, 2012.
  14. Karel Culik II and Juhani Karhumäki. The equivalence of finite valued transducers (on HDT0L languages) is decidable. Theor. Comput. Sci., 47:71–84, 1986.
  15. On reversible transducers. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 113:1–113:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
  16. Aperiodic string transducers. Int. J. Found. Comput. Sci., 29(5):801–824, 2018. \hrefhttps://doi.org/10.1142/S0129054118420054 \pathdoi:10.1142/S0129054118420054.
  17. Rodrigo De Souza. Etude structurelle des transducteurs de norme bornée. PhD thesis, LTCI - Laboratoire Traitement et Communication de l’Information, Paris-Saclay, 2008. URL: \urlhttp://www.theses.fr/2008ENST0023/document.
  18. Gaëtan Douéneau-Tabot. Optimization of string transducers. PhD thesis, Université Paris Cité, Paris, France, 2023. URL: \urlhttps://gdoueneau.github.io/pages/DOUENEAU-TABOT_Optimization-transducers_v2.pdf.
  19. MSO definable string transductions and two-way finite-state transducers. ACM Trans. Comput. Log., 2(2):216–254, 2001.
  20. A regular and complete notion of delay for streaming string transducers. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International Symposium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 32:1–32:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. \hrefhttps://doi.org/10.4230/LIPIcs.STACS.2023.32 \pathdoi:10.4230/LIPIcs.STACS.2023.32.
  21. Copyful streaming string transducers. Fundam. Informaticae, 178(1-2):59–76, 2021. \hrefhttps://doi.org/10.3233/FI-2021-1998 \pathdoi:10.3233/FI-2021-1998.
  22. Multi-tape one-way nonwriting automata. J. Comput. and System Sci., 2:88–101, 1968.
  23. Victor S. Guba. Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems. Mat. Zametki, 40(3):688—690, 1986.
  24. The complexity of decision problems for finite-turn multicounter machines. J. Comput. Syst. Sci., 22(2):220–229, 1981. \hrefhttps://doi.org/10.1016/0022-0000(81)90028-3 \pathdoi:10.1016/0022-0000(81)90028-3.
  25. The complexity of decision problems for finite-turn multicounter machines. In Shimon Even and Oded Kariv, editors, Automata, Languages and Programming, 8th Colloquium, Acre (Akko), Israel, July 13-17, 1981, Proceedings, volume 115 of Lecture Notes in Computer Science, pages 495–505. Springer, 1981.
  26. A note on finite-valued and finitely ambiguous transducers. Math. Syst. Theory, 16(1):61–66, 1983.
  27. Bernard R. Hodgson. Décidabilité par automate fini. Ann. Sci. Math. Québec, 7(3):39–57, 1983.
  28. Oscar H. Ibarra. The unsolvability of the equivalence problem for e-free NGSM’s with unary input (output) alphabet and applications. SIAM J. of Comput., 7(4):524–532, 1978.
  29. Gérard Jacob. Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices. Theoretical Computer Science, 5(2):183–204, 1977.
  30. Ismaël Jecker. A Ramsey theorem for finite monoids. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 44:1–44:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: \urlhttps://doi.org/10.4230/LIPIcs.STACS.2021.44, \hrefhttps://doi.org/10.4230/LIPICS.STACS.2021.44 \pathdoi:10.4230/LIPICS.STACS.2021.44.
  31. J. Howard Johnson. Do rational equivalence relations have regular cross-sections? In Wilfried Brauer, editor, Automata, Languages and Programming, 12th Colloquium, Nafplion, Greece, July 15-19, 1985, Proceedings, volume 194 of Lecture Notes in Computer Science, pages 300–309. Springer, 1985. URL: \urlhttps://doi.org/10.1007/BFb0015755, \hrefhttps://doi.org/10.1007/BFB0015755 \pathdoi:10.1007/BFB0015755.
  32. Automatic presentations of structures. In Logical and Computational Complexity. Selected Papers. Logic and Computational Complexity, International Workshop LCC ’94, Indianapolis, Indiana, USA, 13-16 October 1994, volume 960 of Lecture Notes in Computer Science, pages 367–392. Springer, 1995.
  33. Jérémy Ledent. Streaming string transducers (internship report). \urlhttps://perso.ens-lyon.fr/jeremy.ledent/internship_report_L3.pdf, 2013.
  34. On finite semigroups of matrices. Theoretical Computer Science, 5(2):101–111, 1977.
  35. Equivalence of finite-valued streaming string transducers is decidable. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 122:1–122:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. \hrefhttps://doi.org/10.4230/LIPIcs.ICALP.2019.122 \pathdoi:10.4230/LIPIcs.ICALP.2019.122.
  36. Brigitte Rozoy. Outils et résultats pour les transducteurs boustrophédons. RAIRO-Theoretical Informatics and Applications, 20(3):221–250, 1986.
  37. Aleksi Saarela. Systems of word equations, polynomials and linear algebra: A new approach. Eur. J. Comb., 47:1–14, 2015. \hrefhttps://doi.org/10.1016/j.ejc.2015.01.005 \pathdoi:10.1016/j.ejc.2015.01.005.
  38. Jacques Sakarovitch. A construction on finite automata that has remained hidden. Theor. Comput. Sci., 204(1-2):205–231, 1998. \hrefhttps://doi.org/10.1016/S0304-3975(98)00040-1 \pathdoi:10.1016/S0304-3975(98)00040-1.
  39. On the decidability of bounded valuedness for transducers. In Edward Ochmanski and Jerzy Tyszkiewicz, editors, Mathematical Foundations of Computer Science 2008, 33rd International Symposium, MFCS 2008, Torun, Poland, August 25-29, 2008, Proceedings, volume 5162 of Lecture Notes in Computer Science, pages 588–600. Springer, 2008.
  40. On the decomposition of k-valued rational relations. In Susanne Albers and Pascal Weil, editors, STACS 2008, 25th Annual Symposium on Theoretical Aspects of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings, volume 1 of LIPIcs, pages 621–632. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2008. URL: \urlhttps://doi.org/10.4230/LIPIcs.STACS.2008.1324, \hrefhttps://doi.org/10.4230/LIPICS.STACS.2008.1324 \pathdoi:10.4230/LIPICS.STACS.2008.1324.
  41. Helmut Seidl. Equivalence of finite-valued tree transducers is decidable. Math. Syst. Theory, 27(4):285–346, 1994. \hrefhttps://doi.org/10.1007/BF01192143 \pathdoi:10.1007/BF01192143.
  42. John C. Shepherdson. The reduction of two-way automata to one-way automata. IBM J. Res. Dev., 3(2):198–200, 1959. URL: \urlhttps://doi.org/10.1147/rd.32.0198, \hrefhttps://doi.org/10.1147/RD.32.0198 \pathdoi:10.1147/RD.32.0198.
  43. Andreas Weber. Decomposing finite-valued transducers and deciding their equivalence. SIAM J. Comput., 22(1):175–202, 1993. \hrefhttps://doi.org/10.1137/0222014 \pathdoi:10.1137/0222014.
  44. Andreas Weber. Decomposing a k-valued transducer into k unambiguous ones. RAIRO-ITA, 30(5):379–413, 1996.
  45. On the degree of ambiguity of finite automata. Theor. Comput. Sci., 88(2):325–349, 1991. \hrefhttps://doi.org/10.1016/0304-3975(91)90381-B \pathdoi:10.1016/0304-3975(91)90381-B.
  46. On the decidability of the valuedness problem for two-way finite transducers. Inf. Comput., 285(Part):104870, 2022. URL: \urlhttps://doi.org/10.1016/j.ic.2022.104870, \hrefhttps://doi.org/10.1016/J.IC.2022.104870 \pathdoi:10.1016/J.IC.2022.104870.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com