Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariant Deep Learning of Mixed-Integer Optimal Control Solutions for Vehicle Decision Making and Motion Planning (2405.08122v1)

Published 13 May 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Mixed-integer quadratic programs (MIQPs) are a versatile way of formulating vehicle decision making and motion planning problems, where the prediction model is a hybrid dynamical system that involves both discrete and continuous decision variables. However, even the most advanced MIQP solvers can hardly account for the challenging requirements of automotive embedded platforms. Thus, we use machine learning to simplify and hence speed up optimization. Our work builds on recent ideas for solving MIQPs in real-time by training a neural network to predict the optimal values of integer variables and solving the remaining problem by online quadratic programming. Specifically, we propose a recurrent permutation equivariant deep set that is particularly suited for imitating MIQPs that involve many obstacles, which is often the major source of computational burden in motion planning problems. Our framework comprises also a feasibility projector that corrects infeasible predictions of integer variables and considerably increases the likelihood of computing a collision-free trajectory. We evaluate the performance, safety and real-time feasibility of decision-making for autonomous driving using the proposed approach on realistic multi-lane traffic scenarios with interactive agents in SUMO simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning and control techniques for self-driving urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.
  2. J. H. Reif, “Complexity of the mover’s problem and generalizations,” in 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), 1979, pp. 421–427.
  3. S. Di Cairano and I. V. Kolmanovsky, “Real-time optimization and model predictive control for aerospace and automotive applications,” ser. Amer. Control Conf., 2018, pp. 2392–2409.
  4. J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and automated vehicles: State of the art and future challenges,” Annual Reviews in Control, vol. 45, pp. 18 – 40, 2018.
  5. R. Quirynen, S. Safaoui, and S. Di Cairano, “Real-time mixed-integer quadratic programming for vehicle decision making and motion planning,” ArXiv, 2023.
  6. A. Cauligi, P. Culbertson, E. Schmerling, M. Schwager, B. Stellato, and M. Pavone, “CoCo: Online mixed-integer control via supervised learning,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1447–1454, 2022.
  7. D. Bertsimas and B. Stellato, “The voice of optimization,” Machine Learning, vol. 110, no. 2, pp. 249–277, Feb. 2021.
  8. R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados – a modular open-source framework for fast embedded optimal control,” Mathematical Programming Computation, Oct 2021.
  9. Q. Tran Dinh, S. Gumussoy, W. Michiels, and M. Diehl, “Combining convex–concave decompositions and linearization approaches for solving bmis, with application to static output feedback,” IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1377–1390, 2012.
  10. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  11. A. Cauligi, A. Chakrabarty, S. Di Cairano, and R. Quirynen, “Prism: Recurrent neural networks and presolve methods for fast mixed-integer optimal control,” in Proceedings of The 4th Annual Learning for Dynamics and Control Conference, ser. Proceedings of Machine Learning Research, vol. 168.   PMLR, 23–24 Jun 2022, pp. 34–46.
  12. P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic traffic simulation using SUMO,” in The 21st IEEE International Conference on Intelligent Transportation Systems.   IEEE, 2018.
  13. M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable benchmarks for motion planning on roads,” in 2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 719–726.
  14. C. Xi, T. Shi, Y. Wu, and L. Sun, “Efficient motion planning for automated lane change based on imitation learning and mixed-integer optimization,” in IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020, pp. 1–6.
  15. M. Srinivasan, A. Chakrabarty, R. Quirynen, N. Yoshikawa, T. Mariyama, and S. Di. Cairano, “Fast multi-robot motion planning via imitation learning of mixed-integer programs,” IFAC-PapersOnLine, vol. 54, no. 20, pp. 598–604, 2021, modeling, Estimation and Control Conference MECC.
  16. S. Aradi, “Survey of deep reinforcement learning for motion planning of autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 740–759, 2022.
  17. M. Huegle, G. Kalweit, B. Mirchevska, M. Werling, and J. Boedecker, “Dynamic input for deep reinforcement learning in autonomous driving,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 7566–7573.
  18. J. Park, S. Karumanchi, and K. Iagnemma, “Homotopy-based divide-and-conquer strategy for optimal trajectory planning via mixed-integer programming,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1101–1115, 2015.
  19. X. Qian, F. Altché, P. Bender, C. Stiller, and A. de La Fortelle, “Optimal trajectory planning for autonomous driving integrating logical constraints: An miqp perspective,” in IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, pp. 205–210.
  20. K. Esterle, T. Kessler, and A. Knoll, “Optimal behavior planning for autonomous driving: A generic mixed-integer formulation,” in IEEE Intelligent Vehicles Symposium (IV), 2020, pp. 1914–1921.
  21. T. Kessler, K. Esterle, and A. Knoll, “Linear differential games for cooperative behavior planning of autonomous vehicles using mixed-integer programming,” in 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 4060–4066.
  22. ——, “Mixed-integer motion planning on german roads within the apollo driving stack,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 851–867, 2023.
  23. R. Reiter, M. Kirchengast, D. Watzenig, and M. Diehl, “Mixed-integer optimization-based planning for autonomous racing with obstacles and rewards,” IFAC-PapersOnLine, vol. 54, no. 6, pp. 99–106, 2021, 7th IFAC Conference on Nonlinear Model Predictive Control NMPC.
  24. L. Russo, S. H. Nair, L. Glielmo, and F. Borrelli, “Learning for online mixed-integer model predictive control with parametric optimality certificates,” IEEE Control Systems Letters, vol. 7, pp. 2215–2220, 2023.
  25. D. Bertsimas and B. Stellato, “Online mixed-integer optimization in milliseconds,” INFORMS J. on Computing, vol. 34, no. 4, p. 2229–2248, jul 2022.
  26. D. Masti and A. Bemporad, “Learning binary warm starts for multiparametric mixed-integer quadratic programming,” in 18th European Control Conference (ECC), 2019, pp. 1494–1499.
  27. V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, R. Addanki, T. Hapuarachchi, T. Keck, J. Keeling, P. Kohli, I. Ktena, Y. Li, O. Vinyals, and Y. Zwols, “Solving mixed integer programs using neural networks,” ArXiv, vol. abs/2012.13349, 2020.
  28. E. B. Khalil, C. Morris, and A. Lodi, “MIP-GNN: A data-driven framework for guiding combinatorial solvers,” in Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022.
  29. F. Eiras, M. Hawasly, S. V. Albrecht, and S. Ramamoorthy, “A two-stage optimization-based motion planner for safe urban driving,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 822–834, 2022.
  30. L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of motion planning for highway autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 5, pp. 1826–1848, 2020.
  31. M. Reda, A. Onsy, A. Y. Haikal, and A. Ghanbari, “Path planning algorithms in the autonomous driving system: A comprehensive review,” Robotics and Autonomous Systems, vol. 174, p. 104630, 2024.
  32. M. Sheckells, T. M. Caldwell, and M. Kobilarov, “Fast approximate path coordinate motion primitives for autonomous driving,” in IEEE 56th Annual Conference on Decision and Control (CDC), 2017, pp. 837–842.
  33. L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
  34. O. Arslan, K. Berntorp, and P. Tsiotras, “Sampling-based algorithms for optimal motion planning using closed-loop prediction,” in IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 4991–4996.
  35. Z. Ajanovic, B. Lacevic, B. Shyrokau, M. Stolz, and M. Horn, “Search-based optimal motion planning for automated driving,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 4523–4530.
  36. P. Bender, O. S. Tas, J. Ziegler, and C. Stiller, “The combinatorial aspect of motion planning: Maneuver variants in structured environments,” in IEEE Intelligent Vehicles Symposium (IV), 2015, pp. 1386–1392.
  37. C. Miller, C. Pek, and M. Althoff, “Efficient mixed-integer programming for longitudinal and lateral motion planning of autonomous vehicles,” in IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 1954–1961.
  38. J. Li, X. Xie, Q. Lin, J. He, and J. M. Dolan, “Motion planning by search in derivative space and convex optimization with enlarged solution space,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 13 500–13 507.
  39. S. Deolasee, Q. Lin, J. Li, and J. M. Dolan, “Spatio-temporal motion planning for autonomous vehicles with trapezoidal prism corridors and Bézier curves,” in American Control Conference, San Diego, CA, USA.   IEEE, 2023, pp. 3207–3214.
  40. M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme for nonlinear optimization in optimal feedback control,” SIAM Journal on Control and Optimization, vol. 43, no. 5, pp. 1714–1736, 2005.
  41. H. Zhou, D. Ren, H. Xia, M. Fan, X. Yang, and H. Huang, “Ast-gnn: An attention-based spatio-temporal graph neural network for interaction-aware pedestrian trajectory prediction,” Neurocomputing, vol. 445, pp. 298–308, 2021.
  42. E. Jo, M. Sunwoo, and M. Lee, “Vehicle trajectory prediction using hierarchical graph neural network for considering interaction among multimodal maneuvers,” Sensors, vol. 21, no. 16, 2021.
  43. L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig, “Safe learning in robotics: From learning-based control to safe reinforcement learning,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 5, no. 1, pp. 411–444, 2022.
  44. J. Van Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran, “Autonomous vehicle perception: The technology of today and tomorrow,” Transportation Research Part C: Emerging Technologies, vol. 89, pp. 384–406, 2018.
  45. T. Ersal, I. Kolmanovsky, N. Masoud, N. Ozay, J. Scruggs, R. Vasudevan, and G. Orosz, “Connected and automated road vehicles: state of the art and future challenges,” Vehicle system dynamics, vol. 58, no. 5, pp. 672–704, 2020.
  46. K. Berntorp, A. Weiss, and S. Di Cairano, “Integer ambiguity resolution by mixture kalman filter for improved gnss precision,” IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 4, pp. 3170–3181, 2020.
  47. M. Greiff, S. Di Cairano, K. J. Kim, and K. Berntorp, “A system-level cooperative multiagent gnss positioning solution,” IEEE Transactions on Control Systems Technology, 2023.
  48. M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep sets,” in Advances in Neural Information Processing Systems, vol. 30.   Curran Associates, Inc., 2017.
  49. R. Reiter and M. Diehl, “Parameterization approach of the frenet transformation for model predictive control of autonomous vehicles,” in European Control Conference (ECC), 2021, pp. 2414–2419.
  50. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, 2017, pp. 5998–6008.
  51. L. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001, 1990.
  52. P. Sollich and A. Krogh, “Learning with ensembles: How overfitting can be useful,” in Advances in Neural Information Processing Systems, vol. 8.   MIT Press, 1995.
  53. G. Frison and M. Diehl, “HPIPM: a high-performance quadratic programming framework for model predictive control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020, 21st IFAC World Congress.
  54. F. Debrouwere, W. Van Loock, G. Pipeleers, Q. T. Dinh, M. Diehl, J. De Schutter, and J. Swevers, “Time-optimal path following for robots with convex–concave constraints using sequential convex programming,” IEEE Transactions on Robotics, vol. 29, no. 6, pp. 1485–1495, 2013.
  55. S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear to nonlinear MPC: bridging the gap via the real-time iteration,” International Journal of Control, vol. 93, no. 1, pp. 62–80, 2020.
  56. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.
  57. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
  58. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
  59. S. Krauss, “Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics,” PhD thesis, University of Cologne, April 1998.
  60. J. Erdmann, “SUMO’s lane-changing model,” in Modeling Mobility with Open Data, M. Behrisch and M. Weber, Eds.   Cham: Springer International Publishing, 2015, pp. 105–123.
Citations (2)

Summary

We haven't generated a summary for this paper yet.