Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-range wormhole teleportation (2405.07876v1)

Published 13 May 2024 in quant-ph and hep-th

Abstract: We extend the protocol of Gao and Jafferis arXiv:1911.07416 to allow wormhole teleportation between two entangled copies of the Sachdev-Ye-Kitaev (SYK) model communicating only through a classical channel. We demonstrate in finite $N$ simulations that the protocol exhibits the characteristic holographic features of wormhole teleportation discussed and summarized in Jafferis et al. https://www.nature.com/articles/s41586-022-05424-3 . We review and exhibit in detail how these holographic features relate to size winding which, as first shown by Brown et al. arXiv:1911.06314 and Nezami et al. arXiv:2102.01064, encodes a dual description of wormhole teleportation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. P. Gao and D. L. Jafferis, Journal of High Energy Physics 2021, 97 (2021).
  2. S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).
  3. A. R. Brown, H. Gharibyan, S. Leichenauer, H. W. Lin, S. Nezami, G. Salton, L. Susskind, B. Swingle,  and M. Walter, “Quantum gravity in the lab: Teleportation by size and traversable wormholes,”  (2021), arXiv:1911.06314 [quant-ph] .
  4. S. Nezami, H. W. Lin, A. R. Brown, H. Gharibyan, S. Leichenauer, G. Salton, L. Susskind, B. Swingle,  and M. Walter, “Quantum gravity in the lab: Teleportation by size and traversable wormholes, part ii,”  (2021), arXiv:2102.01064 [quant-ph] .
  5. J. M. Maldacena, JHEP 04, 021 (2003), arXiv:hep-th/0106112 .
  6. P. Hayden and J. Preskill, JHEP 09, 120 (2007), arXiv:0708.4025 [hep-th] .
  7. S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010), arXiv:1006.3794 [hep-th] .
  8. S. H. Shenker and D. Stanford, JHEP 03, 067 (2014a), arXiv:1306.0622 [hep-th] .
  9. S. H. Shenker and D. Stanford, JHEP 12, 046 (2014b), arXiv:1312.3296 [hep-th] .
  10. J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016), arXiv:1604.07818 [hep-th] .
  11. L. Susskind, Fortsch. Phys. 64, 551 (2016), arXiv:1604.02589 [hep-th] .
  12. L. Susskind and Y. Zhao, Phys. Rev. D 98, 046016 (2018), arXiv:1707.04354 [hep-th] .
  13. L. Susskind,   (2017), arXiv:1708.03040 [hep-th] .
  14. J. Maldacena and L. Susskind, Fortschritte der Physik 61, 781 (2013).
  15. R. Valivarthi et al., PRX Quantum 1, 020317 (2020), arXiv:2007.11157 [quant-ph] .
  16. P. Gao,   (2023), arXiv:2306.14988 [hep-th] .
  17. J. Lykken, PoS TASI2020, 010 (2021), arXiv:2010.02931 [quant-ph] .
  18. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2012).
  19. I. Kourkoulou and J. Maldacena,   (2017), arXiv:1707.02325 [hep-th] .
  20. J. Maldacena and X.-L. Qi,   (2018), arXiv:1804.00491 [hep-th] .
  21. A. M. Garcia-Garcia and J. J. Verbaarschot, Physical Review D 94, 126010 (2016).
  22. X.-L. Qi and A. Streicher, Journal of High Energy Physics 2019, 12 (2019).
  23. R. Jackiw, Nucl. Phys. B 252, 343 (1985).
  24. C. Teitelboim, Phys. Lett. B 126, 41 (1983).
Citations (2)

Summary

We haven't generated a summary for this paper yet.