Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction (2405.07854v1)

Published 13 May 2024 in eess.IV and cs.CV

Abstract: In 2020, 685,000 deaths across the world were attributed to breast cancer, underscoring the critical need for innovative and effective breast cancer treatment. Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer, attributed to its efficacy in shrinking large tumors and leading to pathologic complete response. However, the current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts which contain inherent biases and significant uncertainty. A recent study, utilizing volumetric deep radiomic features extracted from synthetic correlated diffusion imaging (CDI$s$), demonstrated significant potential in noninvasive breast cancer pathologic complete response prediction. Inspired by the positive outcomes of optimizing CDI$s$ for prostate cancer delineation, this research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction. Using multiparametric MRI that fuses optimized CDI$s$ with diffusion-weighted imaging (DWI), we obtain a leave-one-out cross-validation accuracy of 93.28%, over 5.5% higher than that previously reported.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chi-en Amy Tai (22 papers)
  2. Alexander Wong (230 papers)

Summary

We haven't generated a summary for this paper yet.