Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Exploration for Data-Efficient General Value Function Evaluations (2405.07838v2)

Published 13 May 2024 in cs.LG and cs.AI

Abstract: General Value Functions (GVFs) (Sutton et al., 2011) represent predictive knowledge in reinforcement learning. Each GVF computes the expected return for a given policy, based on a unique reward. Existing methods relying on fixed behavior policies or pre-collected data often face data efficiency issues when learning multiple GVFs in parallel using off-policy methods. To address this, we introduce GVFExplorer, which adaptively learns a single behavior policy that efficiently collects data for evaluating multiple GVFs in parallel. Our method optimizes the behavior policy by minimizing the total variance in return across GVFs, thereby reducing the required environmental interactions. We use an existing temporal-difference-style variance estimator to approximate the return variance. We prove that each behavior policy update decreases the overall mean squared error in GVF predictions. We empirically show our method's performance in tabular and nonlinear function approximation settings, including Mujoco environments, with stationary and non-stationary reward signals, optimizing data usage and reducing prediction errors across multiple GVFs.

Summary

We haven't generated a summary for this paper yet.