Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? (2405.07782v1)

Published 13 May 2024 in cs.IR

Abstract: Neural ranking models have become increasingly popular for real-world search and recommendation systems in recent years. Unlike their tree-based counterparts, neural models are much less interpretable. That is, it is very difficult to understand their inner workings and answer questions like how do they make their ranking decisions? or what document features do they find important? This is particularly disadvantageous since interpretability is highly important for real-world systems. In this work, we explore feature selection for neural learning-to-rank (LTR). In particular, we investigate six widely-used methods from the field of interpretable ML and introduce our own modification, to select the input features that are most important to the ranking behavior. To understand whether these methods are useful for practitioners, we further study whether they contribute to efficiency enhancement. Our experimental results reveal a large feature redundancy in several LTR benchmarks: the local selection method TabNet can achieve optimal ranking performance with less than 10 features; the global methods, particularly our G-L2X, require slightly more selected features, but exhibit higher potential in improving efficiency. We hope that our analysis of these feature selection methods will bring the fields of interpretable ML and LTR closer together.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lijun Lyu (6 papers)
  2. Nirmal Roy (13 papers)
  3. Harrie Oosterhuis (45 papers)
  4. Avishek Anand (81 papers)

Summary

We haven't generated a summary for this paper yet.