Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAR Image Synthesis with Diffusion Models (2405.07776v1)

Published 13 May 2024 in cs.CV, eess.IV, and eess.SP

Abstract: In recent years, diffusion models (DMs) have become a popular method for generating synthetic data. By achieving samples of higher quality, they quickly became superior to generative adversarial networks (GANs) and the current state-of-the-art method in generative modeling. However, their potential has not yet been exploited in radar, where the lack of available training data is a long-standing problem. In this work, a specific type of DMs, namely denoising diffusion probabilistic model (DDPM) is adapted to the SAR domain. We investigate the network choice and specific diffusion parameters for conditional and unconditional SAR image generation. In our experiments, we show that DDPM qualitatively and quantitatively outperforms state-of-the-art GAN-based methods for SAR image generation. Finally, we show that DDPM profits from pretraining on largescale clutter data, generating SAR images of even higher quality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com